You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Continuous Groups for Physicists is written for graduate students as well as researchers working in the field of theoretical physics. The text has been designed uniquely and it balances coverage of advanced and non-standard topics with an equal focus on the basic concepts for a thorough understanding. The book describes the general theory of Lie groups and Lie algebras, the passage between them, and their unitary/ Hermitian representations in the quantum mechanical setting. The four infinite classical families of compact simple Lie groups and their representations are covered in detail. Readers will benefit from the discussions on topics like spinor representations of real orthogonal groups, the Schwinger representation of a group, induced representations, systems of coherent states, real symplectic groups important in quantum mechanics, Wigner's theorem on symmetry operations in quantum mechanics, ray representations of Lie groups, and groups associated with non-relativistic and relativistic space-time.
The book is designed for graduate students and researchers working in the field of theoretical physics and related fields.
Written by an engineer and sharply focused on practical matters, this text explores the application of Lie groups to solving ordinary differential equations (ODEs). Although the mathematical proofs and derivations in are de-emphasized in favor of problem solving, the author retains the conceptual basis of continuous groups and relates the theory to problems in engineering and the sciences. The author has developed a number of new techniques that are published here for the first time, including the important and useful enlargement procedure. The author also introduces a new way of organizing tables reminiscent of that used for integral tables. These new methods and the unique organizational scheme allow a significant increase in the number of ODEs amenable to group-theory solution. Solution of Ordinary Differential Equations by Continuous Groups offers a self-contained treatment that presumes only a rudimentary exposure to ordinary differential equations. Replete with fully worked examples, it is the ideal self-study vehicle for upper division and graduate students and professionals in applied mathematics, engineering, and the sciences.
The Mathematical Study Of Group Theory Was Initiated In The Early Nineteenth Century By Such Mathematicians As Gauss, Cauchy, Abel, Hamilton, Galois, Cayley, And Many Others. However, The Advantages Of Group Theory In Physics Were Not Recognized Till 1925 When It Was Applied For Formal Study Of Theoretical Foundations Of Quantum Mechanics, Atomic Structures And Spectra By, To Name A Few, H A Bethe, E P Wigner, Etc. It Has Now Become Indispensable In Several Branches Of Physics And Physical Chemistry.Dr. Joshi Develops The Mathematics Of Group Theory And Then Goes On To Present Its Applications To Quantum Mechanics, Crystallography, And Solid State Physics. For Proper Comprehension Of Represe...
Based on lectures by a renowned educator, this book focuses on continuous groups, particularly in terms of applications in geometry and analysis. The author's unique perspectives are illustrated by numerous inventive geometric examples, many of which were inspired by footnotes among the work of Sophus Lie. 1971 edition.
Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmüller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.
Although group theory has played a significant role in the development of various disciplines of physics, there are few recent books that start from the beginning and then build on to consider applications of group theory from the point of view of high energy physicists. Group Theory for High Energy Physicists fills that role. It presents groups, e
An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems.Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry.Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained.A set of problems and solutions has been published in a separate booklet.
A thorough introduction to group theory, this (highly problem-oriented) book goes deeply into the subject to provide a fuller understanding than available anywhere else. The book aims at, not only teaching the material, but also helping to develop the skills needed by a researcher and teacher, possession of which will be highly advantageous in these very competitive times, particularly for those at the early, insecure, stages of their careers. And it is organized and written to serve as a reference to provide a quick introduction giving the essence and vocabulary useful for those who need only some slight knowledge, those just learning, as well as researchers, and especially for the latter it provides a grasp, and often material and perspective, not otherwise available.
An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems. Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry. Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained. A set of problems and solutions has been published in a separate booklet. Request Inspection Copy