You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A popular way to assess the “effort” needed to solve a problem is to count how many evaluations of the problem functions (and their derivatives) are required. In many cases, this is often the dominating computational cost. Given an optimization problem satisfying reasonable assumptions—and given access to problem-function values and derivatives of various degrees—how many evaluations might be required to approximately solve the problem? Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation, and Perspectives addresses this question for nonconvex optimization problems, those that may have local minimizers and appear most often in practice. This is the firs...
Explains the theory behind Machine Learning and highlights how Mathematics can be used in Artificial Intelligence Illustrates how to improve existing algorithms by using advanced mathematics and discusses how Machine Learning can support mathematical modeling Captures how to simulate data by means of artificial neural networks and offers cutting-edge Artificial Intelligence technologies Emphasizes the classification of algorithms, optimization methods, and statistical techniques Explores future integration between Machine Learning and complex mathematical techniques
The Antikythera mechanism was probably the world’s first ‘analog computer’ — a sophisticated device for calculating the motions of stars and planets. This remarkable assembly of more than 30 gears with a differential mechanism, made on Rhodes or Cos in the first century B.C., revised the view of what the ancient Greeks were capable of creating at that time. A comparable level of engineering didn’t become widespread until the industrial revolution nearly two millennia later. This collection of papers provides a good overview of the current state-of-the-art of quantum information science. We do not know how a quantum Antikythera will look like but all we know is that the best way to predict the future is to create it. From the perspective of the future, it may well be that the real computer age has not yet even begun.
An invitation to optimization with Riemannian geometry for applied mathematics, computer science and engineering students and researchers.
This book focuses on the development of approximation-related algorithms and their relevant applications. Individual contributions are written by leading experts and reflect emerging directions and connections in data approximation and optimization. Chapters discuss state of the art topics with highly relevant applications throughout science, engineering, technology and social sciences. Academics, researchers, data science practitioners, business analysts, social sciences investigators and graduate students will find the number of illustrations, applications, and examples provided useful. This volume is based on the conference Approximation and Optimization: Algorithms, Complexity, and Applications, which was held in the National and Kapodistrian University of Athens, Greece, June 29–30, 2017. The mix of survey and research content includes topics in approximations to discrete noisy data; binary sequences; design of networks and energy systems; fuzzy control; large scale optimization; noisy data; data-dependent approximation; networked control systems; machine learning ; optimal design; no free lunch theorem; non-linearly constrained optimization; spectroscopy.
The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
None
Moment and polynomial optimization is an active research field used to solve difficult questions in many areas, including global optimization, tensor computation, saddle points, Nash equilibrium, and bilevel programs, and it has many applications. The author synthesizes current research and applications, providing a systematic introduction to theory and methods, a comprehensive approach for extracting optimizers and solving truncated moment problems, and a creative methodology for using optimality conditions to construct tight Moment-SOS relaxations. This book is intended for applied mathematicians, engineers, and researchers entering the field. It can be used as a textbook for graduate students in courses on convex optimization, polynomial optimization, and matrix and tensor optimization.
The only book offering solved exercises for integer and combinatorial optimization, this book contains 102 classroom tested problems of varying scope and difficulty chosen from a plethora of topics and applications. It has an associated website containing additional problems, lecture notes, and suggested readings. Topics covered include modeling capabilities of integer variables, the Branch-and-Bound method, cutting planes, network optimization models, shortest path problems, optimum tree problems, maximal cardinality matching problems, matching-covering duality, symmetric and asymmetric TSP, 2-matching and 1-tree relaxations, VRP formulations, and dynamic programming. Problems and Solutions for Integer and Combinatorial Optimization: Building Skills in Discrete Optimization is meant for undergraduate and beginning graduate students in mathematics, computer science, and engineering to use for self-study and for instructors to use in conjunction with other course material and when teaching courses in discrete optimization.
This concise, self-contained volume introduces convex analysis and optimization algorithms, with an emphasis on bridging the two areas. It explores cutting-edge algorithms—such as the proximal gradient, Douglas–Rachford, Peaceman–Rachford, and FISTA—that have applications in machine learning, signal processing, image reconstruction, and other fields. An Introduction to Convexity, Optimization, and Algorithms contains algorithms illustrated by Julia examples and more than 200 exercises that enhance the reader’s understanding of the topic. Clear explanations and step-by-step algorithmic descriptions facilitate self-study for individuals looking to enhance their expertise in convex analysis and optimization. Designed for courses in convex analysis, numerical optimization, and related subjects, this volume is intended for undergraduate and graduate students in mathematics, computer science, and engineering. Its concise length makes it ideal for a one-semester course. Researchers and professionals in applied areas, such as data science and machine learning, will find insights relevant to their work.