You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.
Plant diseases worldwide are responsible for billions of dollarsworth of crop losses every year. With less agrochemicals being usedand less new fungicides coming on the market due to environmentalconcerns, more effort is now being put into the use of geneticpotential of plants for pathogen resistance and the development ofinduced or acquired resistance as an environmentally safe means ofdisease control. This comprehensive book examines in depth the development andexploitation of induced resistance. Chapters review currentknowledge of the agents that can elicit induced resistance,genomics, signalling cascades, mechanisms of defence to pests andpathogens and molecular tools. Further chapters consider thetopical application of inducers for disease control, microbialinduction of pathogen resistance, transgenic approaches, pathogenpopulation biology, trade offs associated with induced resistanceand integration of induced resistance in crop protection. The bookconcludes with a consideration of socio-economic driversdetermining the use of induced resistance, and the future ofinduced resistance in crop protection.
Since the concept of allelopathy was introduced almost 100 years ago, research has led to an understanding that plants are involved in complex communicative interactions. They use a battery of different signals that convey plant-relevant information within plant individuals as well as between plants of the same species or different species. The 13 chapters of this volume discuss all these topics from an ecological perspective. Communication between plants allows them to share physiological and ecological information relevant for their survival and ?tness. It is obvious that in these very early days of ecological plant communication research we are illuminating only the ‘tip of iceberg’ o...
The small phenolic compound salicylic acid (SA) is critical for plant defense against a broad spectrum of pathogens. SA is also involved in multi-layered defense responses, from pathogen-associated molecular pattern triggered basal defense, resistance gene-mediated defense, to systemic acquired resistance. Recent decades have witnessed tremendous progress towards our understanding of SA-mediated signaling networks. Many genes have been identified to have direct or indirect effect on SA biosynthesis or to regulate SA accumulation. Several SA receptors have been identified and characterization of these receptors has shed light on the mechanisms of SA-mediated defense signaling, which encompass...
This volume provides methods, protocols, and reviews that are useful for new and experienced plant microbiome researchers. Chapters guide readers through the investigation of microbiomes associated with seeds, sampling microbiomes from plant compartments and tissues, culture-based methods, culture-independent metabarcoding methods, methods to obtain DNA and perform metabarcoding, protocols to block PCR amplification from the plant host, qPCR-based methods, editing of specific genes in Bacillus genomes, and Streptomycetes and plant microbial indicators. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, The Plant Microbiome: Methods and Protocols aims to ensure successful results in the further study of this vital field.
Induced resistance offers the prospect of broad spectrum, long-lasting and potentially environmentally-benign disease and pest control in plants. Induced Resistance for Plant Defense 2e provides a comprehensive account of the subject, encompassing the underlying science and methodology, as well as research on application of the phenomenon in practice. The second edition of this important book includes updated coverage of cellular aspects of induced resistance, including signalling and defenses, costs and trade-offs associated with the expression of induced resistance, research aimed at integrating induced resistance into crop protection practice, and induced resistance from a commercial pers...
Plants are members of complex communities and interact both with antagonists and beneficial organisms. An important question in plant defense-signaling research is how plants integrate signals induced by pathogens, insect herbivores and beneficial microbes into the most appropriate adaptive response. Molecular and genomic tools are now being used to uncover the complexity of the induced defense signaling networks that have evolved during the arms races between plants and the other organisms with which they intimately interact. To understand the functioning of the complex defense signaling network in nature, molecular biologists and ecologists have joined forces to place molecular mechanisms of induced plant defenses in an ecological perspective. In this Research Topic, we aim to provide an on-line, open-access snapshot of the current state of the art of the field of induced plant responses to microbes and insects, with a special focus on the translation of molecular mechanisms to ecology and vice versa.
Recent years have seen tremendous progress in unraveling the molecular basis of different plant-microbe interactions. Knowledge has accumulated on the mecha nisms of the microbial infection of plants, which can lead to either disease or resistance. The mechanisms developed by plants to interact with microbes, whether viruses, bacteria, or fungi, involve events that can lead to symbiotic association or to disease or tumor formation. Cell death caused by pathogen infection has been of great interest for many years because of its association with plant resistance. There appear to be two types of plant cell death associated with pathogen infection, a rapid hypersensitive cell death localized at ...
This volume contains reviews presented at the 31 st annual meeting of the Phytochemical Society of North America, held at Colorado State University in Fort Collins, Colorado on June 22-26, 1991. This symposium, entitled Phenolic Metabolism in Plants, celebrated the origin of this society as the Plant Phenolics Group of North America; the first symposium, entitled Biochemistry of Plant Phenolic Substances, was also held at Fort Collins from August 31 to September 1, 1961. A brief history of the Society is presented in Chapter 12 by Stewart Brown, one of the original founders of the Society. We dedicate this volume to Hans Grisebach, 1926-1990, Professor of Biochemistry at the Biologisches Institut II, Freiburg, Germany, where he headed for many years a laboratory responsible for major advances in the area of phenolic metabolism; this will be self evident from the numerous bibliographical references cited in the literature for papers by his Freiburg group from about 1958 until now, and subsequently by former students and colla borators. His impact on the data reviewed in this volume will testify to this.