You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions.
Technological advances related to legal information, knowledge representation, engineering, and processing have aroused growing interest within the research community and the legal industry in recent years. These advances relate to areas such as computational and formal models of legal reasoning, legal data analytics, legal information retrieval, the application of machine learning techniques to different legal tasks, and the experimental evaluation of these systems. This book presents the proceedings of JURIX 2023, the 36th International Conference on Legal Knowledge and Information Systems, held from 18–20 December 2023 in Maastricht, the Netherlands. This annual conference has become re...
This book constitutes the proceedings of the 18th China National Conference on Computational Linguistics, CCL 2019, held in Kunming, China, in October 2019. The 56 full papers presented in this volume were carefully reviewed and selected from 134 submissions. They were organized in topical sections named: linguistics and cognitive science, fundamental theory and methods of computational linguistics, information retrieval and question answering, text classification and summarization, knowledge graph and information extraction, machine translation and multilingual information processing, minority language processing, language resource and evaluation, social computing and sentiment analysis, NLP applications.
These are momentous times for the comparative analysis of judicial behaviour. Once the sole province of U.S. scholars—and mostly political scientists at that—now, researchers throughout the world, drawing on history, economics, law, and psychology, are illuminating how and why judges make the choices they do and what effect those choices have on society. Bringing together leading scholars in the field, The Oxford Handbook of Comparative Judicial Behaviour consists of ten sections, each devoted to important subfields: fundamentals—providing overviews designed to identify common trends in courts worldwide; approaches to judging; data, methods, and technologies; staffing the courts; advoc...
AI AND MACHINE LEARNING FOR NETWORK AND SECURITY MANAGEMENT Extensive Resource for Understanding Key Tasks of Network and Security Management AI and Machine Learning for Network and Security Management covers a range of key topics of network automation for network and security management, including resource allocation and scheduling, network planning and routing, encrypted traffic classification, anomaly detection, and security operations. In addition, the authors introduce their large-scale intelligent network management and operation system and elaborate on how the aforementioned areas can be integrated into this system, plus how the network service can benefit. Sample ideas covered in thi...
This two-volume set, LNCS 11317 and 12318, constitutes the thoroughly refereed proceedings of the 4th International Joint Conference, APWeb-WAIM 2020, held in Tianjin, China, in September 2020. Due to the COVID-19 pandemic the conference was organizedas a fully online conference. The 42 full papers presented together with 17 short papers, and 6 demonstration papers were carefully reviewed and selected from 180 submissions. The papers are organized around the following topics: Big Data Analytics; Graph Data and Social Networks; Knowledge Graph; Recommender Systems; Information Extraction and Retrieval; Machine Learning; Blockchain; Data Mining; Text Analysis and Mining; Spatial, Temporal and Multimedia Databases; Database Systems; and Demo.
Machine learning and artificial intelligence (AI) are powerful tools that create predictive models, extract information, and help make complex decisions. They do this by examining an enormous quantity of labeled training data to find patterns too complex for human observation. However, in many real-world applications, well-labeled data can be difficult, expensive, or even impossible to obtain. In some cases, such as when identifying rare objects like new archeological sites or secret enemy military facilities in satellite images, acquiring labels could require months of trained human observers at incredible expense. Other times, as when attempting to predict disease infection during a pandem...
Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment. However, previous knowledge can be leveraged to accelerate learning and enable s...
Reinforcement learning is a powerful tool in artificial intelligence in which virtual or physical agents learn to optimize their decision making to achieve long-term goals. In some cases, this machine learning approach can save programmers time, outperform existing controllers, reach super-human performance, and continually adapt to changing conditions. It has shown human level performance on a number of tasks (REF) and the methodology for automation in robotics and self-driving cars (REF). This book argues that these successes show reinforcement learning can be adopted successfully in many different situations, including robot control, stock trading, supply chain optimization, and plant con...