You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Homological algebra, because of its fundamental nature, is relevant to many branches of pure mathematics, including number theory, geometry, group theory and ring theory. Professor Northcott's aim is to introduce homological ideas and methods and to show some of the results which can be achieved. The early chapters provide the results needed to establish the theory of derived functors and to introduce torsion and extension functors. The new concepts are then applied to the theory of global dimensions, in an elucidation of the structure of commutative Noetherian rings of finite global dimension and in an account of the homology and cohomology theories of monoids and groups. A final section is devoted to comments on the various chapters, supplementary notes and suggestions for further reading. This book is designed with the needs and problems of the beginner in mind, providing a helpful and lucid account for those about to begin research, but will also be a useful work of reference for specialists. It can also be used as a textbook for an advanced course.
This book explores commutative ring theory, an important a foundation for algebraic geometry and complex analytical geometry.
An introduction to the modern theory of ideas.
The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. •• . Of course, the problem now arises: how to compute the genus of a...
This second edition of a successful graduate text provides a careful and detailed algebraic introduction to Grothendieck's local cohomology theory, including in multi-graded situations, and provides many illustrations of the theory in commutative algebra and in the geometry of quasi-affine and quasi-projective varieties. Topics covered include Serre's Affineness Criterion, the Lichtenbaum–Hartshorne Vanishing Theorem, Grothendieck's Finiteness Theorem and Faltings' Annihilator Theorem, local duality and canonical modules, the Fulton–Hansen Connectedness Theorem for projective varieties, and connections between local cohomology and both reductions of ideals and sheaf cohomology. The book is designed for graduate students who have some experience of basic commutative algebra and homological algebra and also experts in commutative algebra and algebraic geometry. Over 300 exercises are interspersed among the text; these range in difficulty from routine to challenging, and hints are provided for some of the more difficult ones.
First textbook-level account of basic examples and techniques in this area. Suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. David Eisenbud is a well-known mathematician and current president of the American Mathematical Society, as well as a successful Springer author.
Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.
This book develops the machinery of homological algebra and its applications to commutative rings and modules. It assumes familiarity with basic commutative algebra, for example, as covered in the author's book, Commutative Algebra. The first part of the book is an elementary but thorough exposition of the concepts of homological algebra, starting from categorical language up to the construction of derived functors and spectral sequences. A full proof of the celebrated Freyd-Mitchell theorem on the embeddings of small Abelian categories is included. The second part of the book is devoted to the application of these techniques in commutative algebra through the study of projective, injective,...