You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This unique monograph brings together important material in the field of noncommutative rings and modules. It provides an up-to-date account of the topic of cyclic modules and the structure of rings which will be of particular interest to those working in abstract algebra and to graduate students who are exploring potential research topics.
This volume, dedicated to Bruno J. Müller, a renowned algebraist, is a collection of papers that provide a snapshot of the diversity of themes and applications that interest algebraists today. The papers highlight the latest progress in ring and module research and present work done on the frontiers of the topics discussed. In addition, selected expository articles are included to give algebraists and other mathematicians, including graduate students, an accessible introduction to areas that may be outside their own expertise.
This book surveys more than 125 years of aspects of associative algebras, especially ring and module theory. It is the first to probe so extensively such a wealth of historical development. Moreover, the author brings the reader up to date, in particular through his report on the subject in the second half of the twentieth century. Included in the book are certain categorical properties from theorems of Frobenius and Stickelberger on the primary decomposition of finite Abelian formulations of the latter by Krull, Goldman, and others; Maschke's theorem on the representation theory of finite groups over a field; and the fundamental theorems of Wedderburn on the structure of finite dimensional ...
Module theory is an important tool for many different branches of mathematics, as well as being an interesting subject in its own right. Within module theory, the concept of injective modules is particularly important. Extending modules form a natural class of modules which is more general than the class of injective modules but retains many of its
This new book can be read independently from the first volume and may be used for lecturing, seminar- and self-study, or for general reference. It focuses more on specific topics in order to introduce readers to a wealth of basic and useful ideas without the hindrance of heavy machinery or undue abstractions. User-friendly with its abundance of examples illustrating the theory at virtually every step, the volume contains a large number of carefully chosen exercises to provide newcomers with practice, while offering a rich additional source of information to experts. A direct approach is used in order to present the material in an efficient and economic way, thereby introducing readers to a considerable amount of interesting ring theory without being dragged through endless preparatory material.
Advances in Inorganic Chemistry presents timely and informative summaries of the current progress in a variety of subject areas within inorganic chemistry, ranging from bioinorganic to solid state. This acclaimed serial features reviews written by experts in the area and is an indispensable reference to advanced researchers. Each volume of Advances in Inorganic Chemistry contains an index, and each chapter is fully referenced.
Quasi-Frobenius rings and Nakayama rings were introduced by T Nakayama in 1939. Since then, these classical artinian rings have continued to fascinate ring theorists with their abundance of properties and structural depth. In 1978, M Harada introduced a new class of artinian rings which were later called Harada rings in his honour. Quasi-Frobenius rings, Nakayama rings and Harada rings are very closely interrelated. As a result, from a new perspective, we may study the classical artinian rings through their interaction and overlap with Harada rings. The objective of this seminal work is to present the structure of Harada rings and provide important applications of this structure to the class...
Ring theory has been developing through the interaction between the investigation of its own algebraic structure and its application to many areas of mathematics, computer science, and physics among others.This volume consists of a collection of survey articles by invited speakers and original articles refereed by world experts that was presented at the fifth China-Japan-Korea International Symposium. The survey articles provide some ideas of the application as well as an excellent overview of the various areas in ring theory. The original articles exhibit new ideas, tools and techniques needed for successful research investigation in ring theory and show the trend of current research.The articles cover all of the most important areas in ring theory, making this volume a useful resource book for researchers in mathematics ? both beginners and advanced experts.