Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

An Introduction to the Theory of Point Processes
  • Language: en
  • Pages: 591

An Introduction to the Theory of Point Processes

This is the second volume of the reworked second edition of a key work on Point Process Theory. Fully revised and updated by the authors who have reworked their 1988 first edition, it brings together the basic theory of random measures and point processes in a unified setting and continues with the more theoretical topics of the first edition: limit theorems, ergodic theory, Palm theory, and evolutionary behaviour via martingales and conditional intensity. The very substantial new material in this second volume includes expanded discussions of marked point processes, convergence to equilibrium, and the structure of spatial point processes.

An Introduction to the Theory of Point Processes
  • Language: en
  • Pages: 487

An Introduction to the Theory of Point Processes

Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.

The Craft of Probabilistic Modelling
  • Language: en
  • Pages: 323

The Craft of Probabilistic Modelling

This book brings together the personal accounts and reflections of nineteen mathematical model-builders, whose specialty is probabilistic modelling. The reader may well wonder why, apart from personal interest, one should commission and edit such a collection of articles. There are, of course, many reasons, but perhaps the three most relevant are: (i) a philosophicaJ interest in conceptual models; this is an interest shared by everyone who has ever puzzled over the relationship between thought and reality; (ii) a conviction, not unsupported by empirical evidence, that probabilistic modelling has an important contribution to make to scientific research; and finally (iii) a curiosity, historic...

Stochastic and Integral Geometry
  • Language: en
  • Pages: 692

Stochastic and Integral Geometry

Stochastic geometry deals with models for random geometric structures. Its early beginnings are found in playful geometric probability questions, and it has vigorously developed during recent decades, when an increasing number of real-world applications in various sciences required solid mathematical foundations. Integral geometry studies geometric mean values with respect to invariant measures and is, therefore, the appropriate tool for the investigation of random geometric structures that exhibit invariance under translations or motions. Stochastic and Integral Geometry provides the mathematically oriented reader with a rigorous and detailed introduction to the basic stationary models used in stochastic geometry – random sets, point processes, random mosaics – and to the integral geometry that is needed for their investigation. The interplay between both disciplines is demonstrated by various fundamental results. A chapter on selected problems about geometric probabilities and an outlook to non-stationary models are included, and much additional information is given in the section notes.

An Introduction to Symbolic Dynamics and Coding
  • Language: en
  • Pages: 571

An Introduction to Symbolic Dynamics and Coding

Elementary introduction to symbolic dynamics, updated to describe the main advances in the subject since the original publication in 1995.

Symbolic Dynamics
  • Language: en
  • Pages: 263

Symbolic Dynamics

Nearly one hundred years ago Jacques Hadamard used infinite sequences of symbols to analyze the distribution of geodesics on certain surfaces. That was the beginning of symbolic dynamics. In the 1930's and 40's Arnold Hedlund and Marston Morse again used infinite sequences to investigate geodesics on surfaces of negative curvature. They coined the term symbolic dynamics and began to study sequence spaces with the shift transformation as dynamical systems. In the 1940's Claude Shannon used sequence spaces to describe infor mation channels. Since that time symbolic dynamics has been used in ergodic theory, topological dynamics, hyperbolic dynamics, information theory and complex dynamics. Symb...

Stochastic Geometry and Wireless Networks
  • Language: en
  • Pages: 224

Stochastic Geometry and Wireless Networks

This volume bears on wireless network modeling and performance analysis. The aim is to show how stochastic geometry can be used in a more or less systematic way to analyze the phenomena that arise in this context. It first focuses on medium access control mechanisms used in ad hoc networks and in cellular networks. It then discusses the use of stochastic geometry for the quantitative analysis of routing algorithms in mobile ad hoc networks. The appendix also contains a concise summary of wireless communication principles and of the network architectures considered in the two volumes.

Topological and Ergodic Theory of Symbolic Dynamics
  • Language: en
  • Pages: 481

Topological and Ergodic Theory of Symbolic Dynamics

Symbolic dynamics is essential in the study of dynamical systems of various types and is connected to many other fields such as stochastic processes, ergodic theory, representation of numbers, information and coding, etc. This graduate text introduces symbolic dynamics from a perspective of topological dynamical systems and presents a vast variety of important examples. After introducing symbolic and topological dynamics, the core of the book consists of discussions of various subshifts of positive entropy, of zero entropy, other non-shift minimal action on the Cantor set, and a study of the ergodic properties of these systems. The author presents recent developments such as spacing shifts, ...

Epilepsy
  • Language: en
  • Pages: 536

Epilepsy

  • Type: Book
  • -
  • Published: 2016-04-19
  • -
  • Publisher: CRC Press

Epilepsy, one of the most prevalent neurological disorders, affects approximately 1% (greater than 60 million) of the world's population. In an estimated 20 million of these patients, seizures are not controlled even by multiple anti-seizure drugs, and are extremely difficult to predict. Epilepsy: The Intersection of Neurosciences, Biology, Mathema

Probabilistic Thinking
  • Language: en
  • Pages: 746

Probabilistic Thinking

This volume provides a necessary, current and extensive analysis of probabilistic thinking from a number of mathematicians, mathematics educators, and psychologists. The work of 58 contributing authors, investigating probabilistic thinking across the globe, is encapsulated in 6 prefaces, 29 chapters and 6 commentaries. Ultimately, the four main perspectives presented in this volume (Mathematics and Philosophy, Psychology, Stochastics and Mathematics Education) are designed to represent probabilistic thinking in a greater context.