You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This manuscript is devoted to classifying the isomorphism classes of the virtually cyclic subgroups of the braid groups of the 2-sphere. As well as enabling us to understand better the global structure of these groups, it marks an important step in the computation of the K-theory of their group rings. The classification itself is somewhat intricate, due to the rich structure of the finite subgroups of these braid groups, and is achieved by an in-depth analysis of their group-theoretical and topological properties, such as their centralisers, normalisers and cohomological periodicity. Another important aspect of our work is the close relationship of the braid groups with mapping class groups. This manuscript will serve as a reference for the study of braid groups of low-genus surfaces, and isaddressed to graduate students and researchers in low-dimensional, geometric and algebraic topology and in algebra.
Represents the proceedings of an informal three-day seminar held during the International Congress of Mathematicians in Berkeley in 1986. This work covers topics including topological fixed point theory from both the algebraic and geometric viewpoints, and the fixed point theory of nonlinear operators on normed linear spaces and its applications.
This volume contains the proceedings of the Workshop on Topology held at the Pontificia Universidade Catolica in Rio de Janeiro in January 1992. Bringing together about one hundred mathematicians from Brazil and around the world, the workshop covered a variety of topics in differential and algebraic topology, including group actions, foliations, low-dimensional topology, and connections to differential geometry. The main concentration was on foliation theory, but there was a lively exchange on other current topics in topology. The volume contains an excellent list of open problems in foliation research, prepared with the participation of some of the top world experts in this area. Also presented here are two surveys on group actions---finite group actions and rigidity theory for Anosov actions---as well as an elementary survey of Thurston's geometric topology in dimensions 2 and 3 that would be accessible to advanced undergraduates and graduate students.
The book consists of articles at the frontier of current research in Algebraic Topology. It presents recent results by top notch experts, and is intended primarily for researchers and graduate students working in the field of algebraic topology. Included is an important article by Cohen, Johnes and Yan on the homology of the space of smooth loops on a manifold M, endowed with the Chas-Sullivan intersection product, as well as an article by Goerss, Henn and Mahowald on stable homotopy groups of spheres, which uses the cutting edge technology of "topological modular forms".
Leading researchers survey the latest developments in group theory and many related areas.
This volume reflects the work of the Brazilian topology community. It also contains the work of some topologists who either collaborate or interact with a Brazilian topologist. Most of the work has been done in algebraic and geometric topology.