You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the Workshop on Homotopy Theory of Function Spaces and Related Topics, which was held at the Mathematisches Forschungsinstitut Oberwolfach, in Germany, from April 5-11, 2009. This volume contains fourteen original research articles covering a broad range of topics that include: localization and rational homotopy theory, evaluation subgroups, free loop spaces, Whitehead products, spaces of algebraic maps, gauge groups, loop groups, operads, and string topology. In addition to reporting on various topics in the area, this volume is supposed to facilitate the exchange of ideas within Homotopy Theory of Function Spaces, and promote cross-fertilization between Homotopy Theory of Function Spaces and other areas. With these latter aims in mind, this volume includes a survey article which, with its extensive bibliography, should help bring researchers and graduate students up to speed on activity in this field as well as a problems list, which is an expanded and edited version of problems discussed in sessions held at the conference. The problems list is intended to suggest directions for future work.
Let Q be a quiver of extended Dynkin type D˜n. In this first of two papers, the authors show that the quiver Grassmannian Gre–(M) has a decomposition into affine spaces for every dimension vector e– and every indecomposable representation M of defect −1 and defect 0, with the exception of the non-Schurian representations in homogeneous tubes. The authors characterize the affine spaces in terms of the combinatorics of a fixed coefficient quiver for M. The method of proof is to exhibit explicit equations for the Schubert cells of Gre–(M) and to solve this system of equations successively in linear terms. This leads to an intricate combinatorial problem, for whose solution the authors develop the theory of Schubert systems. In Part 2 of this pair of papers, they extend the result of this paper to all indecomposable representations M of Q and determine explicit formulae for the F-polynomial of M.
We introduce a class of multilinear singular integral forms which generalize the Christ-Journe multilinear forms. The research is partially motivated by an approach to Bressan’s problem on incompressible mixing flows. A key aspect of the theory is that the class of operators is closed under adjoints (i.e. the class of multilinear forms is closed under permutations of the entries). This, together with an interpolation, allows us to reduce the boundedness.
In around 1980, G. Mason announced the classification of a subclass of an important class of finite simple groups known as 'quasithin groups'. In the main theorem of this two-part work the authors provide a proof of a stronger theorem classifying a larger class of groups independently of Mason's research.
The authors study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. They develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to our context. They complement their generic results with the detailed study of many important special cases. In particular they study crossed products of tensor algebras, triangular AF algebras and various associated C -algebras. They make contributions to the study of C -envelopes, semisimplicity, the semi-Dirichlet property, Takai duality and the Hao-Ng isomorphism problem. They also answer questions from the pertinent literature.
In this paper the authors study mesoscopic fluctuations for Dyson's Brownian motion with β=2 . Dyson showed that the Gaussian Unitary Ensemble (GUE) is the invariant measure for this stochastic evolution and conjectured that, when starting from a generic configuration of initial points, the time that is needed for the GUE statistics to become dominant depends on the scale we look at: The microscopic correlations arrive at the equilibrium regime sooner than the macrosopic correlations. The authors investigate the transition on the intermediate, i.e. mesoscopic, scales. The time scales that they consider are such that the system is already in microscopic equilibrium (sine-universality for the local correlations), but have not yet reached equilibrium at the macrosopic scale. The authors describe the transition to equilibrium on all mesoscopic scales by means of Central Limit Theorems for linear statistics with sufficiently smooth test functions. They consider two situations: deterministic initial points and randomly chosen initial points. In the random situation, they obtain a transition from the classical Central Limit Theorem for independent random variables to the one for the GUE.
The authors prove an analogue of the Kotschick–Morgan Conjecture in the context of monopoles, obtaining a formula relating the Donaldson and Seiberg–Witten invariants of smooth four-manifolds using the -monopole cobordism. The main technical difficulty in the -monopole program relating the Seiberg–Witten and Donaldson invariants has been to compute intersection pairings on links of strata of reducible monopoles, namely the moduli spaces of Seiberg–Witten monopoles lying in lower-level strata of the Uhlenbeck compactification of the moduli space of monopoles. In this monograph, the authors prove—modulo a gluing theorem which is an extension of their earlier work—that these intersection pairings can be expressed in terms of topological data and Seiberg–Witten invariants of the four-manifold. Their proofs that the -monopole cobordism yields both the Superconformal Simple Type Conjecture of Moore, Mariño, and Peradze and Witten's Conjecture in full generality for all closed, oriented, smooth four-manifolds with and odd appear in earlier works.
This memoir is devoted to the proof of a well-posedness result for the gravity water waves equations, in arbitrary dimension and in fluid domains with general bottoms, when the initial velocity field is not necessarily Lipschitz. Moreover, for two-dimensional waves, the authors consider solutions such that the curvature of the initial free surface does not belong to L2. The proof is entirely based on the Eulerian formulation of the water waves equations, using microlocal analysis to obtain sharp Sobolev and Hölder estimates. The authors first prove tame estimates in Sobolev spaces depending linearly on Hölder norms and then use the dispersive properties of the water-waves system, namely Strichartz estimates, to control these Hölder norms.
The authors study algebras of singular integral operators on R and nilpotent Lie groups that arise when considering the composition of Calderón-Zygmund operators with different homogeneities, such as operators occuring in sub-elliptic problems and those arising in elliptic problems. These algebras are characterized in a number of different but equivalent ways: in terms of kernel estimates and cancellation conditions, in terms of estimates of the symbol, and in terms of decompositions into dyadic sums of dilates of bump functions. The resulting operators are pseudo-local and bounded on for . . While the usual class of Calderón-Zygmund operators is invariant under a one-parameter family of dilations, the operators studied here fall outside this class, and reflect a multi-parameter structure.
In this paper, time changes of the Brownian motions on generalized Sierpinski carpets including n-dimensional cube [0,1]n are studied. Intuitively time change corresponds to alteration to density of the medium where the heat flows. In case of the Brownian motion on [0,1]n, density of the medium is homogeneous and represented by the Lebesgue measure. The author's study includes densities which are singular to the homogeneous one. He establishes a rich class of measures called measures having weak exponential decay. This class contains measures which are singular to the homogeneous one such as Liouville measures on [0,1]2 and self-similar measures. The author shows the existence of time change...