You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Part 1: How are the incredible diversity and robustness compatible with animal morphologies? Based on apical-basal and planar cell polarities’ ubiquity, I suggest a 3D mathematical model: Point particles represent cells having zero, one, or two unit-arrows representing polarities. I test the model abilities on preimplantation development, sea urchin gastrulation, mammalian neurulation, organoid folding, and tubulogenesis. I find that a minimal, versatile toolbox, including cellular polarities, captures the emergence of diverse and robust animal morphologies. Part 2: How are deep convective events spatially organized in the tropical atmosphere? Here, I test the importance of atmospheric cold pools for organizing convection. I suggest a 2D mathematical model: Points expand into circles representing cold pools. When circles meet, a convective event occurs, and a new circle forms. I find this model captures convective scale increase and initial stages of convective self-aggregation. The latter is crucial due to its link to tropical cyclogenesis.
None
Martian surface contains diverse lithologies (from sedimentary rocks to mafic-ultramafic igneous rocks) and ground patterns. These rocks record the late-stage evolution on the Martian surface from a temperate environment with bodies of liquid water to the current cold and hyper-arid environment. The constraints on the key parameters and processes for water-rock interaction, sedimentation of materials, and geomorphological development can provide important insights into the environmental change and habitability on the Martian surface. However, due to the difficulty in accessing Martian samples and limited remote-sensing data available from the Martian surface, most of the mysteries on Mars re...
This book aims at providing a brief but broad overview of biosignatures. The topics addressed range from prebiotic signatures in extraterrestrial materials to the signatures characterising extant life as well as fossilised life, biosignatures related to space, and space flight instrumentation to detect biosignatures either in situ or from orbit. The book ends with philosophical reflections on the implications of life elsewhere. In the 15 chapters written by an interdisciplinary team of experts, it provides both detailed explanations on the nature of biosignatures as well as useful case studies showing how they are used and identified in ancient rocks, for example. One case study addresses the controversial finding of traces of fossil life in a meteorite from Mars. The book will be of interest not only to astrobiologists but also to terrestrial paleontologists as well as any reader interested in the prospects of finding a second example of life on another planet.
Cell and Molecular Responses to Stress is a new multi-volume book series from Elsevier Science that focuses on how organisms respond at a molecular level to environmental stresses imposed upon them. All organisms deal with variations in multiple environmental factors including temperature, oxygen, salinity, and water availability. Many show amazing tolerances to extreme stress with remarkable biochemical adaptations that allow life to persist under very difficult circumstances. This series explores the molecular mechanisms by which cells and organisms respond to stress, focusing on the variations in metabolic response that allow some cells and organisms to deal with extreme stress, others to...
This collection of essays is devoted to algae that are unexpectedly found in harsh habitats. The authors explain how these algae thrive in various temperature ranges, extreme pH values, salt solutions, UV radiation, dryness, heavy metals, anaerobic niches, various levels of illumination, and hydrostatic pressure. Not only do the essays provide clues about life on the edges of the Earth, but possibly elsewhere in the universe as well.
"Synthetic biology" is the label of a new technoscientific field with many different facets and agendas. One common aim is to "create life", primarily by using engineering principles to design and modify biological systems for human use. In a wider context, the topic has become one of the big cases in the legitimization processes associated with the political agenda to solve global problems with the aid of (bio-)technological innovation. Conceptual-level and meta-level analyses are needed: we should sort out conceptual ambiguities to agree on what we talk about, and we need to spell out agendas to see the disagreements clearly. The book is based on the interdisciplinary summer school "Analyzing the societal dimensions of synthetic biology", which took place in Berlin in September 2014. The contributions address controversial discussions around the philosophical examination, public perception, moral evaluation and governance of synthetic biology.
The data in this book are new or updated, and will serve also as Origin of Life and evolutionary studies. Endospores of bacteria have a long history of use as model organisms in astrobiology, including survival in extreme environments and interplanetary transfer of life. Numerous other bacteria as well as archaea, lichens, fungi, algae and tiny animals (tardigrades, or water bears) are now being investigated for their tolerance to extreme conditions in simulated or real space environments. Experimental results from exposure studies on the International Space Station and space probes for up to 1.5 years are presented and discussed. Suggestions for extaterrestrial energy sources are also indicated. Audience Researchers and graduate students in microbiology, biochemistry, molecular biology and astrobiology, as well as anyone interested in the search for extraterrestrial life and its technical preparations.