Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

An Introduction to Statistical Learning
  • Language: en
  • Pages: 617

An Introduction to Statistical Learning

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods pr...

Evolution of Translational Omics
  • Language: en
  • Pages: 354

Evolution of Translational Omics

Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.

Refining the Concept of Scientific Inference When Working with Big Data
  • Language: en
  • Pages: 115

Refining the Concept of Scientific Inference When Working with Big Data

The concept of utilizing big data to enable scientific discovery has generated tremendous excitement and investment from both private and public sectors over the past decade, and expectations continue to grow. Using big data analytics to identify complex patterns hidden inside volumes of data that have never been combined could accelerate the rate of scientific discovery and lead to the development of beneficial technologies and products. However, producing actionable scientific knowledge from such large, complex data sets requires statistical models that produce reliable inferences (NRC, 2013). Without careful consideration of the suitability of both available data and the statistical model...

Modern Statistics for Modern Biology
  • Language: en
  • Pages: 407

Modern Statistics for Modern Biology

None

Machine Learning with R
  • Language: en
  • Pages: 587

Machine Learning with R

Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

A Penalized Matrix Decomposition, and Its Applications
  • Language: en
  • Pages: 171

A Penalized Matrix Decomposition, and Its Applications

We present a penalized matrix decomposition, a new framework for computing a low-rank approximation for a matrix. This low-rank approximation is a generalization of the singular value decomposition. While the singular value decomposition usually yields singular vectors that have no elements that are exactly equal to zero, our new decomposition results in sparse singular vectors. This decomposition has a number of applications. When it is applied to a data matrix, it can yield interpretable results. One can apply it to a covariance matrix in order to obtain a new method for sparse principal components, and one can apply it to a crossproducts matrix in order to obtain a new method for sparse canonical correlation analysis. Moreover, when applied to a dissimilarity matrix, this leads to a method for sparse hierarchical clustering, which allows for the clustering of a set of observations using an adaptively chosen subset of the features. Finally, if this decomposition is applied to a between-class covariance matrix then it yields penalized linear discriminant analysis, an extension of Fisher's linear discriminant analysis to the high-dimensional setting.

Statistical Data Analysis
  • Language: en
  • Pages: 218

Statistical Data Analysis

This book is a guide to the practical application of statistics in data analysis as typically encountered in the physical sciences. It is primarily addressed at students and professionals who need to draw quantitative conclusions from experimental data. Although most of the examples are takenfrom particle physics, the material is presented in a sufficiently general way as to be useful to people from most branches of the physical sciences. The first part of the book describes the basic tools of data analysis: concepts of probability and random variables, Monte Carlo techniques,statistical tests, and methods of parameter estimation. The last three chapters are somewhat more specialized than those preceding, covering interval estimation, characteristic functions, and the problem of correcting distributions for the effects of measurement errors (unfolding).

Practical Statistics for Data Scientists
  • Language: en
  • Pages: 317

Practical Statistics for Data Scientists

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why ...

Data Analysis with Python and PySpark
  • Language: en
  • Pages: 454

Data Analysis with Python and PySpark

Think big about your data! PySpark brings the powerful Spark big data processing engine to the Python ecosystem, letting you seamlessly scale up your data tasks and create lightning-fast pipelines.In Data Analysis with Python and PySpark you will learn how to:Manage your data as it scales across multiple machines, Scale up your data programs with full confidence, Read and write data to and from a variety of sources and formats, Deal with messy data with PySpark's data manipulation functionality, Discover new data sets and perform exploratory data analysis, Build automated data pipelines that transform, summarize, and get insights from data, Troubleshoot common PySpark errors, Creating reliab...

Building a Recommendation System with R
  • Language: en
  • Pages: 158

Building a Recommendation System with R

Learn the art of building robust and powerful recommendation engines using R About This Book Learn to exploit various data mining techniques Understand some of the most popular recommendation techniques This is a step-by-step guide full of real-world examples to help you build and optimize recommendation engines Who This Book Is For If you are a competent developer with some knowledge of machine learning and R, and want to further enhance your skills to build recommendation systems, then this book is for you. What You Will Learn Get to grips with the most important branches of recommendation Understand various data processing and data mining techniques Evaluate and optimize the recommendatio...