You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. In Lectures on Stochastic Programming: Modeling and Theory, Second Edition, the authors introduce new material to reflect recent developments in stochastic programming, including: an analytical description of the tangent and normal cones of chance constrained sets; analysis of optimality conditions applied to nonconvex problems; a discussion of the stochastic dual dynamic programming method; an extended discussion of law invariant coherent risk measures and their Kusuoka representations; and in-depth analysis of dynamic risk measures and concepts of time consistency, including several new results.
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available.? In?Lectures on Stochastic Programming: Modeling and Theory, Second Edition, the authors introduce new material to reflect recent developments in stochastic programming, including: an analytical description of the tangent and normal cones of chance constrained sets; analysis of optimality conditions applied to nonconvex problems; a discussion of the stochastic dual dynamic programming method; an extended discussion of law invariant coherent risk measures and their Kusuoka representations; and in-depth analysis of dynamic risk measures and concepts of time consistency, including several new results.?
An accessible and rigorous presentation of contemporary models and ideas of stochastic programming, this book focuses on optimization problems involving uncertain parameters for which stochastic models are available. Since these problems occur in vast, diverse areas of science and engineering, there is much interest in rigorous ways of formulating, analyzing, and solving them. This substantially revised edition presents a modern theory of stochastic programming, including expanded and detailed coverage of sample complexity, risk measures, and distributionally robust optimization. It adds two new chapters that provide readers with a solid understanding of emerging topics; updates Chapter 6 to...
Die effiziente und nachhaltige Ausgestaltung der rettungsdienstlichen Infrastruktur zur Sicherstellung einer hohen kommunalen Versorgungsqualität stellt eine komplexe Planungsaufgabe dar. Insbesondere Fragestellungen der Standortplanung für Rettungswachen und Rettungsmittel (z.B. RTWs) sind in einem dynamischen und durch Unsicherheit geprägten Umfeld für die rechtzeitige Versorgung in Notfallsituationen von entscheidender Bedeutung. In dieser Arbeit werden innovative Optimierungsmodelle vorgestellt, die einerseits optimale Standortentscheidung für Rettungsmittel auf einer taktischen Ebene unter Berücksichtigung dynamischer Umwelteinflüsse und unsicherer Nachfrage bestimmen. Anderersei...
The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.
This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Using many examples to illustrate the different techniques useful for formulating models, this text beautifully elucidates the breadth of modeling capabilities that are supported by Pyomo and its handling of complex real-world applications. This second edition provides an expanded presentation of Pyomo’s modeling capabilities, providing a broader description of the software that will enable the user to develop and optimize models. Introductory chapte...
Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013). This set of a book of abstracts and searchable, full paper USBdevice is must-have literature for researchers and practitioners involved with safety, reliability, risk and life-cycle performance of structures and infrastructures.
The first comprehensive guide to distributional reinforcement learning, providing a new mathematical formalism for thinking about decisions from a probabilistic perspective. Distributional reinforcement learning is a new mathematical formalism for thinking about decisions. Going beyond the common approach to reinforcement learning and expected values, it focuses on the total reward or return obtained as a consequence of an agent's choices—specifically, how this return behaves from a probabilistic perspective. In this first comprehensive guide to distributional reinforcement learning, Marc G. Bellemare, Will Dabney, and Mark Rowland, who spearheaded development of the field, present its key...
Optimization problems arising in practice usually contain several random parameters. Hence, in order to obtain optimal solutions being robust with respect to random parameter variations, the mostly available statistical information about the random parameters should be considered already at the planning phase. The original problem with random parameters must be replaced by an appropriate deterministic substitute problem, and efficient numerical solution or approximation techniques have to be developed for those problems. This proceedings volume contains a selection of papers on modelling techniques, approximation methods, numerical solution procedures for stochastic optimization problems and applications to the reliability-based optimization of concrete technical or economic systems.
Probabilistic and Randomized Methods for Design under Uncertainty is a collection of contributions from the world’s leading experts in a fast-emerging branch of control engineering and operations research. The book will be bought by university researchers and lecturers along with graduate students in control engineering and operational research.