You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Although the concept of allosterism has been known for over half a century, its application in drug discovery has exploded in recent years. The emergence of novel technologies that enable molecular-level ligand-receptor interactions to be studied in studied in unprecedented detail has driven this trend. This book, written by the leaders in this young research area, describes the latest developments in allosterism for drug discovery. Bringing together research in a diverse range of scientific disciplines, Allosterism in Drug Discovery is a key reference for academics and industrialists interested in understanding allosteric interactions. The book provides an in-depth review of research using small molecules as chemical probes and drug candidates that interact allosterically with proteins of relevance to life sciences and human disease. Knowledge of these interactions can then be applied in the discovery of the novel therapeutics of the future. This book will be useful for people working in all disciplines associated with drug discovery in academia or industry, as well as postgraduate students who may be working in the design of allosteric modulators.
The Industry-University Cooperative Chemistry Program (IUCCP) has sponsored eight previous international symposia covering a range of topics of interest to industrial and academic chemists. The ninth IUCCP Symposium, held March 18-21, 1991 at Texas A&M University was the second in a two part series focusing on Biotechnology. The title for this Symposium "Applications of Enzyme Biotechnology" was by design a rather all encompassing title, similar in some respects to the discipline. Biotechnology refers to the application of biochemistry for the development of a commercial product. Persons employed in or interested in biotechnology may be chemists, molecular biologists, biophysicists, or physi...
First published in 1992. Routledge is an imprint of Taylor & Francis, an informa company.
This open access book, published under a CC BY 4.0 license in the Pubmed indexed book series Handbook of Experimental Pharmacology, provides up-to-date information on best practice to improve experimental design and quality of research in non-clinical pharmacology and biomedicine.
Annual Reports in Medicinal chemistry continues to be the premier source for reviews of seminal aspects of medicinal chemistry, providing timely and critical reviews of the important topics in medicinal chemistry today.
Annual Reports in Medicinal Chemistry provides timely and critical reviews of important topics in medicinal chemistry together with an emphasis on emerging topics in the biological sciences, which are expected to provide the basis for entirely new future therapies.
Pathophysiological states, neurological and psychiatric diseases are almost universally considered from the neurocentric point of view, with neurons being the principal cellular element of pathological process. The brain homeostasis, which lies at the fulcrum of healthy brain function, the compromise of which invariably results in dysfunction/disease, however, is entirely controlled by neuroglia. It is becoming clear that neuroglial cells are involved in various aspects of initiation, progression and resolution of neuropathology. In this book we aim to integrate the body of information that has accumulated in recent years revealing the active role of glia in such pathophysiological processes. Understanding roles of glial cells in pathology will provide new targets for medical intervention and aide the development of much needed therapeutics. This book will be particularly useful for researchers, students, physicians and psychotherapists working in the field of neurobiology, neurology and psychiatry.
Compared with other disease areas, central nervous system (CNS) disorders have had the highest failure rate for new compounds in advanced clinical trials. Most CNS drugs fail because of efficacy, and the core issue underlying these problems is a poor understanding of disease biology. Concern about the poor productivity in neuroscience drug development has gained intensity over the past decade, amplified by a retraction in investment from the pharmaceutical industry. This retreat by industry has been fueled by the high failure rate of compounds in advanced clinical trials for nervous system disorders. In response to the de-emphasis of CNS disorders in therapeutic development relative to other...