You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides an accessible guide to using the rock physics-based forward modeling approach for mapping the subsurface, systematically linking rock properties to seismic amplitude. Providing practical workflows, the book shows how to methodically vary lithology, porosity, rock type, and pore fluids and reservoir geometry, calculate the corresponding elastic properties, and then generate synthetic seismic traces. These synthetic traces can then be compared to actual seismic traces from the field: a similar actual seismic response implies similar rock properties in the subsurface. The book catalogs various cases, including clastic sediments, carbonates, and time-lapse seismic monitoring, and discusses the effect of attenuation on seismic reflections. It shows how to build earth models (pseudo-wells) using deterministic and statistical approaches, and includes case studies based on real well data. A vital guide for researchers and petroleum geologists, in industry and academia, providing sample catalogs of synthetic seismic reflections from a variety of realistic reservoir models.
Seismic reservoir characterization aims to build 3-dimensional models of rock and fluid properties, including elastic and petrophysical variables, to describe and monitor the state of the subsurface for hydrocarbon exploration and production and for CO₂ sequestration. Rock physics modeling and seismic wave propagation theory provide a set of physical equations to predict the seismic response of subsurface rocks based on their elastic and petrophysical properties. However, the rock and fluid properties are generally unknown and surface geophysical measurements are often the only available data to constrain reservoir models far away from well control. Therefore, reservoir properties are gene...
A revised edition that provides a full update on the most current methods, tools, and research in petroleum geostatistics.
This contributed volume presents a multi-perspective collection of the latest research findings on oil and gas exploration and imparts insight that can greatly assist in understanding field behavior, design of test programs, and design of field operations. With this book, engineers also gain a powerful guide to the most commonly used numerical simulation methods that aid in reservoir modelling. In addition, the contributors explore development of technologies that allow for cost effective oil and gas exploration while minimizing the impact on our water resources, surface and groundwater aquifers, geological stability of impacted areas, air quality, and infrastructure assets such as roads, pipelines, water, and wastewater networks. Easy to understand, the book identifies equipment and procedural problems inherent to oil and gas operations and provides systematic approaches for solving them.
An overview of the geophysical techniques and analysis methods for monitoring subsurface carbon dioxide storage for researchers and industry practitioners.
This book introduces the major concepts of probability and statistics, along with the necessary computational tools, for undergraduates and graduate students.
Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and d...
The Encyclopedia of Mathematical Geosciences is a complete and authoritative reference work. It provides concise explanation on each term that is related to Mathematical Geosciences. Over 300 international scientists, each expert in their specialties, have written around 350 separate articles on different topics of mathematical geosciences including contributions on Artificial Intelligence, Big Data, Compositional Data Analysis, Geomathematics, Geostatistics, Geographical Information Science, Mathematical Morphology, Mathematical Petrology, Multifractals, Multiple Point Statistics, Spatial Data Science, Spatial Statistics, and Stochastic Process Modeling. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and author indices are comprehensive and extensive.
Fine Reservoir Description: Techniques, Current Status, Challenges and Solutions presents studies on fine oil and gas reservoirs, covering aspects of current status and progress, content and methods/techniques, as well as challenges and solutions through literature review and case studies of reservoirs, including volcanic rocks in the Songliao Basin, glutenite at the northwestern margin of the Junggar Basin, and sandstone in the Liaohe Basin, China. This book contains a large amount of data and illustrations. - Provides a comprehensive overview of the latest advances in refined reservoir characterization for three types of reservoirs: high water cut, low permeability, and complex lithology - Includes methods and techniques of fine reservoir description that are elaborated from nine aspects, such as fine stratigraphic division and correlation, fracture characterization and fine characterization of sand body - Presents eight easy to use measures that are proposed to solve the problems of fine reservoir description
Brings together widely scattered theoretical and laboratory rock physics relations critical for modelling and interpretation of geophysical data.