You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Contains nineteen essays in which the authors discuss issues related to teaching and learning in science and mathematics, discussing the need to determine student understanding, ways to improve curriculum and teaching, and methods of implementing teacher change.
Chemistry seeks to provide qualitative and quantitative explanations for the observed behaviour of elements and their compounds. Doing so involves making use of three types of representation: the macro (the empirical properties of substances); the sub-micro (the natures of the entities giving rise to those properties); and the symbolic (the number of entities involved in any changes that take place). Although understanding this triplet relationship is a key aspect of chemical education, there is considerable evidence that students find great difficulty in achieving mastery of the ideas involved. In bringing together the work of leading chemistry educators who are researching the triplet relationship at the secondary and university levels, the book discusses the learning involved, the problems that students encounter, and successful approaches to teaching. Based on the reported research, the editors argue for a coherent model for understanding the triplet relationship in chemical education.
This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teachers, educators and researchers, the notion of using the pedagogical functions of multiple representations to support teaching and learning is still a gap in physics education. The research presented in the three sections of the book is introduced by descriptions of various psychological theories that are applied in different ways for designing physics teaching and learning in classroom settings. The following chapters of the book illustrate teaching and learning with respect to applying specific physics multiple representations in dif...
Chemical education is essential to everybody because it deals with ideas that play major roles in personal, social, and economic decisions. This book is based on three principles: that all aspects of chemical education should be associated with research; that the development of opportunities for chemical education should be both a continuous process and be linked to research; and that the professional development of all those associated with chemical education should make extensive and diverse use of that research. It is intended for: pre-service and practising chemistry teachers and lecturers; chemistry teacher educators; chemical education researchers; the designers and managers of formal ...
This new publication in the Models and Modeling in Science Education series synthesizes a wealth of international research on using multiple representations in biology education and aims for a coherent framework in using them to improve higher-order learning. Addressing a major gap in the literature, the volume proposes a theoretical model for advancing biology educators’ notions of how multiple external representations (MERs) such as analogies, metaphors and visualizations can best be harnessed for improving teaching and learning in biology at all pedagogical levels. The content tackles the conceptual and linguistic difficulties of learning biology at each level—macro, micro, sub-micro,...
This book brings together powerful ideas and new developments from internationally recognised scholars and classroom practitioners to provide theoretical and practical knowledge to inform progress in science education. This is achieved through a series of related chapters reporting research on analogy and metaphor in science education. Throughout the book, contributors not only highlight successful applications of analogies and metaphors, but also foreshadow exciting developments for research and practice. Themes include metaphor and analogy: best practice, as reasoning; for learning; applications in teacher development; in science education research; philosophical and theoretical foundations. Accordingly, the book is likely to appeal to a wide audience of science educators –classroom practitioners, student teachers, teacher educators and researchers.
This volume provides a summary of the findings that educational research has to offer on good practice in school science teaching. It offers an overview of scholarship and research in the field, and introduces the ideas and evidence that guide it.
Statistical models attempt to describe and quantify relationships between variables. In the models presented in this chapter, there is a response variable (sometimes called dependent variable) and at least one predictor variable (sometimes called independent or explanatory variable). When investigating a possible cause-and-effect type of relationship, the response variable is the putative effect and the predictors are the hypothesized causes. Typically, there is a main predictor variable of interest; other predictors in the model are called covariates. Unknown covariates or other independent variables not controlled in an experiment or analysis can affect the dependent or outcome variable an...
This book focuses on developing and updating prospective and practicing chemistry teachers’ pedagogical content knowledge. The 11 chapters of the book discuss the most essential theories from general and science education, and in the second part of each of the chapters apply the theory to examples from the chemistry classroom. Key sentences, tasks for self-assessment, and suggestions for further reading are also included. The book is focused on many different issues a teacher of chemistry is concerned with. The chapters provide contemporary discussions of the chemistry curriculum, objectives and assessment, motivation, learning difficulties, linguistic issues, practical work, student activ...
In contemporary society, science constitutes a significant part of human life in that it impacts on how people experience and understand the world and themselves. The rapid advances in science and technology, newly established societal and cultural norms and values, and changes in the climate and environment, as well as, the depletion of natural resources all greatly impact the lives of children and youths, and hence their ways of learning, viewing the world, experiencing phenomena around them and interacting with others. These changes challenge science educators to rethink the epistemology and pedagogy in science classrooms today as the practice of science education needs to be proactive an...