You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.
Numbers imitate space, which is of such a di?erent nature —Blaise Pascal It is fair to date the study of the foundation of mathematics back to the ancient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proofs? and What assumptions are proofs based on? The ?rst question, traditionally an internal question of the ?eld of logic, was also wrestled with in antiquity. Aristotle gave his famous syllogistic s- tems, and the Stoics had a nascent propositional ...
This book is the first modern introduction to the logic of infinitary languages in forty years, and is aimed at graduate students and researchers in all areas of mathematical logic. Connections between infinitary model theory and other branches of mathematical logic, and applications to algebra and algebraic geometry are both comprehensively explored.
Bringing together powerful new tools from set theory and the philosophy of language, this book proposes a solution to one of the few unresolved paradoxes from antiquity, the Paradox of the Liar. Barwise and Etchemendy model and compare Russellian and Austinian conceptions of propositions, and develop a range of model-theoretic techniques--based on Aczel's work--that open up new avenues in logical and formal semantics.
""Fresh, brave, and excellent to think about. Nothing beats this as an original, critical, and sympathetic reassessment of anarchism as a body of evolving emancipatory practices and as a body of knowledge. I can't wait to teach it." -James C. Scott, Sterling Professor of Political Science and Anthropology. Yale University.
None
This book introduces first order stability theory, organized around the spectrum problem, with complete proofs of the Vaught conjecture for ω-stable theories.
None
"Modern model theory began with Morley's categoricity theorem: A countable first-order theory that has a unique (up to isomorphism) model in one uncountable cardinal (i.e., is categorical in cardinality) if and only if the same holds in all uncountable cardinals. Over the last 35 years Shelah made great strides in extending this result to infinitary logic, where the basic tool of compactness fails. He invented the notion of an Abstract Elementary Class to give a unifying semantic account of theories in first-order, infinitary logic and with some generalized quantifiers. Zilber developed similar techniques of infinitary model theory to study complex exponentiation." "This book provides the fi...