You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A revised version of the author's PhD thesis written under the supervision of J Lepowsky at Rutgers University in 1983.
Sonya Kovalevskaya was a distinguished mathematician and considered by her contemporaries to be among the best of her generation. This work contains background material about Kovalevskaya's life and work, including a discussion of how she has been perceived by the mathematical community over the last century.
This volume contains the proceedings of a conference in honor of Goro Azumaya's seventieth birthday, held at Indiana University of Bloomington in May 1990. Professor Azumaya, who has been on the faculty of Indiana University since 1968, has made many important contributions to modern abstract algebra. His introduction and investigation of what have come to be known as Azumaya algebras subsequently stimulated much research on such rings and algebras, as well as applications to geometry and number theory. In addition to honoring Professor Azumaya's contributions, the conference was intended to stimulate interaction among three areas of his research interests; Azumaya algebras, group and Hopf algebra actions, and module theory. Aimed at researchers in algebra, this volume contains contributions by some of the leaders in these areas.
During his lifetime, L. K. Hua played a leading role in and exerted a great influence upon the development in China of modern mathematics, both pure and applied. His mathematical career began in 1931 at Tsinghua University where he continued as a professor for many years. Hua made many significant contributions to number theory, algebra, geometry, complex analysis, numerical analysis, and operations research. In particular, he initiated the study of classical groups in China and developed new matrix methods which, as applied by him as well as his followers, were instrumental in the successful attack of many problems. To honor his memory, a joint China-U.S. conference on Classical Groups and Related Topics was held at Tsinghua University in Beijing in May 1987. This volume represents the proceedings of that conference and contains both survey articles and research papers focusing on classical groups and closely related topics.
In July 1987, an AMS-IMS-SIAM Joint Summer Research Conference on Geometry of Random Motion was held at Cornell University. The initial impetus for the meeting came from the desire to further explore the now-classical connection between diffusion processes and second-order (hypo)elliptic differential operators. To accomplish this goal, the conference brought together leading researchers with varied backgrounds and interests: probabilists who have proved results in geometry, geometers who have used probabilistic methods, and probabilists who have studied diffusion processes. Focusing on the interplay between probability and differential geometry, this volume examines diffusion processes on va...
Since its genesis more than thirty-five years ago, the field of computer vision has been known by various names, including pattern recognitions, image analysis, and image understanding. The central problem of computer vision is obtaining descriptive information by computer analysis of images of a scene. Together with the related fields of image processing and computer graphics, it has become an established discipline at the interface between computer science and electrical engineering. This volume contains fourteen papers presented at the AMS Special Session on Geometry Related to Computer Vision, held in Hoboken, New Jersey in Ooctober 1989. This book makes the results presented at the Spec...
Emphasizes the accomplishments of Chinese number theorists during 1949-1979, a period when correspondence between China and other countries was discouraged. This work presents a survey of the significant contributions of Chinese mathematicians. It also reflects the developments and state of research in number theory in China.
This volume contains the proceedings of the Workshop on Logic and Computation, held in July 1987 at Carnegie-Mellon University. The focus of the workshop was the refined interaction between mathematics and computation theory, one of the most fascinating and potentially fruitful developments in logic. The importance of this interaction lies not only in the emergence of the computer as a powerful tool in mathematics research, but also in the various attempts to carry out significant parts of mathematics in computationally informative ways. The proceedings pursue three complementary aims: to develop parts of mathematics under minimal set-theoretic assumptions; to provide formal frameworks suitable for computer implementation; and to extract, from formal proofs, mathematical and computational information. Aimed at logicians, mathematicians, and computer scientists, this volume is rich in results and replete with mathematical, logical, and computational problems.
This 1985 AMS Summer Research Conference brought together mathematicians interested in multiparameter bifurcation with scientists working on fluid instabilities and chemical reactor dynamics. This proceedings volume demonstrates the mutually beneficial interactions between the mathematical analysis, based on genericity, and experimental studies in these fields. Various papers study steady state bifurcation, Hopf bifurcation to periodic solutions, interactions between modes, dynamic bifurcations, and the role of symmetries in such systems. A section of abstracts at the end of the volume provides guides and pointers to the literature. The mathematical study of multiparameter bifurcation leads to a number of theoretical and practical difficulties, many of which are discussed in these papers. The articles also describe theoretical and experimental studies of chemical reactors, which provide many situations in which to test the mathematical ideas. Other test areas are found in fluid dynamics, particularly in studying the routes to chaos in two laboratory systems, Taylor-Couette flow between rotating cylinders and Rayleigh-Benard convection in a fluid layer.