You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nonlinear Optical Crystals contains the most complete and up-to-date reference material on properties of nonlinear optical crystals including: Traditional and specific applications The mathematical formulas necessary for the calculation of the frequency conversion process A survey of 63 nonlinear optical crystals containing more than 1500 different references with full titles Recent applications of common and novel nonlinear materials, including quasi-phase matching Special consideration for periodically-poled and self-frequency-doubling materials Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information
Four years ago when we had finished our work on the first edition of our Handbook we didn't even suppose that three years later it would become necessary to greatly revise and update the material. It happened because of the following developments. 1. The invention and tremendous development of modern nonlinear optical crystals such as BBO, LBO, KTP, ZnGeP , etc. 2 2. Rapid progress in laser techniques (femtosecond CPM laser, Ti: sapphire laser, diode-pumped solid-state lasers, etc.). 3. The appearence of numerous organic crystals which can be synthesized with predictable properties. 4. Progress in the theory of nonlinear frequency conversion utilizing biaxial crystals, femtosecond pulses, et...
Nonlinear Optical Crystals contains the most complete and up-to-date reference material on properties of nonlinear optical crystals including: Traditional and specific applications The mathematical formulas necessary for the calculation of the frequency conversion process A survey of 63 nonlinear optical crystals containing more than 1500 different references with full titles Recent applications of common and novel nonlinear materials, including quasi-phase matching Special consideration for periodically-poled and self-frequency-doubling materials Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information
None
Since the invention of the first laser 30 years ago, the frequency conversion of laser radiation in nonlinear optical crystals has become an important technique widely used in quantum electronies and laser physies for solving various scientific and engineering problems. The fundamental physics of three-wave light interactions in nonlinear optical crystals is now largely understood. This has enabled the production of the various harmonie generators, sum and difference frequency generators, and parametrie oscillators based on nonlinear crystals that are now commercially available. At the same time, scientists continue an active search for novel high-efficiency optical materials. Therefore, in ...
None