You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
In the last 20 years the disciplines of particle physics, astrophysics, nuclear physics and cosmology have grown together in an unprecedented way. A brilliant example is nuclear double beta decay, an extremely rare radioactive decay mode, which is one of the most exciting and important fields of research in particle physics at present and the flagship of non-accelerator particle physics. While already discussed in the 1930s, only in the 1980s was it understood that neutrinoless double beta decay can yield information on the Majorana mass of the neutrino, which has an impact on the structure of space-time. Today, double beta decay is indispensable for solving the problem of the neutrino mass ...
Nuclear double beta decay is one of the most promising tools for probing beyond-the-standard-model physics on beyond-accelerator energy scales. It is already now probing the TeV scale, on which new physics should manifest itself according to theoretical expectations. Only in the early 1980s was it known that double beta decay yields information on the Majorana mass of the exchanged neutrino. At present, the sharpest bound for the electron neutrino mass arises from this process. It is only in the last 10 years that the much more far-reaching potential of double beta decay has been discovered. Today, the potential of double beta decay includes a broad range of topics that are equally relevant ...
None
None
Neutrino '96 is indispensable for students and researchers of neutrino physics. It contains up-to-date reviews and discussions on topics such as Solar Neutrino Physics, Neutrino Oscillations, Intrinsic Neutrino Properties, and Neutrino Cosmology and Astronomy.
These proceedings contain over 100 talks on all aspects of Physics Beyond the Standard Model of the strong and electroweak interactions — ranging from Supersymmetry, Grand Unification, Technicolor, Exotic Particles, and CP Violation to Baryogenesis, Dark Matter, Strings and Black Holes — by leading authorities and the most active researchers in High Energy Physics. The goal of the conference is to provide a completely current summary of the most exciting and aesthetically appealing theoretical ideas, especially with regard to their predictions for yet undiscovered new particles, interactions and consequent phenomena. Particular emphasis is placed on current experimental limits and constraints on new physics, and on expectations and predictions regarding our ability to probe and discriminate between the many possibilities through experiments at present and future colliders in the decade(s) to come.