You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Sophie Germain overcame gender stigmas and a lack of formal education to prove that for all prime exponents less than 100 Case I of Fermat's Last Theorem holds. Hidden behind a man's name, her brilliance as mathematician was first discovered by three of the greatest scholars of the eighteenth century, Lagrange, Gauss, and Legendre. In Sophie's Diary, Germain comes to life through a fictionalized journal that intertwines mathematics with historical descriptions of the brutal events that took place in Paris between 1789 and 1793. This format provides a plausible perspective of how a young Sophie could have learned mathematics on her own—both fascinated by numbers and eager to master tough subjects without a teacher's guidance. Her passion for mathematics is integrated into her personal life as an escape from societal outrage. Sophie's Diary is suitable for a variety of readers—both young and old, mathematicians and novices—who will be inspired and enlightened on a field of study made easy, as told through the intellectual and personal struggles of an exceptional young woman.
“It appears to me that if one wants to make progress in mathematics one should study the masters and not the pupils.” —Niels Henrik Abel Recent pedagogical research has supported Abel's claim of the effectiveness of reading the masters. Students exposed to historically based pedagogy see mathematics not as a monolithic assemblage of facts but as a collection of mental processes and an evolving cultural construct built to solve actual problems. Exposure to the immediacy of the original investigations can inspire an inquiry mindset in students and lead to an appreciation of mathematics as a living intellectual activity. TRIUMPHS (TRansforming Instruction in Undergraduate Mathematics via ...
The interaction of the history of mathematics and mathematics education has long been construed as an esoteric area of inquiry. Much of the research done in this realm has been under the auspices of the history and pedagogy of mathematics group. However there is little systematization or consolidation of the existing literature aimed at undergraduate mathematics education, particularly in the teaching and learning of the history of mathematics and other undergraduate topics. In this monograph, the chapters cover topics such as the development of Calculus through the actuarial sciences and map making, logarithms, the people and practices behind real world mathematics, and fruitful ways in which the history of mathematics informs mathematics education. The book is meant to serve as a source of enrichment for undergraduate mathematics majors and for mathematics education courses aimed at teachers.
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologist...
Previously published separately, the two books aha! Gotcha and aha! Insight are here combined as a single volume. The aha! books, as they are referred to by fans of Martin Gardner, contain 144 wonderful puzzles from the reigning king of recreational mathematics. In this combined volume, you will find puzzles ranging over geometry, logic, probability, statistics, number, time, combinatorics, and word play. Gardner calls these puzzles aha! problems, that 'seem difficult, and indeed are difficult if you go about trying to solve them in traditional ways. But if you can free your mind from standard problem solving techniques, you may be receptive to an aha! reaction that leads immediately to a solution. Don't be discouraged if, at first, you have difficulty with these problems. After a while you will begin to catch the spirit of offbeat, nonlinear thinking, and you may be surprised to find your aha! ability improving.'
Now in its third edition, this highly successful textbook is widely regarded as the 'bible of computer algebra'.
G. H. Hardy ranks among the greatest twentieth-century mathematicians. This book introduces this extraordinary individual and his writing.
Classroom resource material allowing the integration of mathematics history into undergraduate mathematics teaching.