You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Now available in a fully revised and updated second edition, this well established textbook provides a straightforward introduction to the theory of probability. The presentation is entertaining without any sacrifice of rigour; important notions are covered with the clarity that the subject demands. Topics covered include conditional probability, independence, discrete and continuous random variables, basic combinatorics, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous worked examples and exercises to help build the important skills necessary for problem solving.
This guide provides a wide-ranging selection of illuminating, informative and entertaining problems, together with their solution. Topics include modelling and many applications of probability theory.
This concise introduction to probability theory is written in an informal tutorial style with concepts and techniques defined and developed as necessary. Examples, demonstrations, and exercises are used to explore ways in which probability is motivated by, and applied to, real life problems in science, medicine, gaming and other subjects of interest. It assumes minimal prior technical knowledge and is suitable for students taking introductory courses, those needing a working knowledge of probability theory and anyone interested in this endlessly fascinating and entertaining subject.
An introduction to simple stochastic processes and models, this text includes numerous exercises, problems and solutions, as well as covering key concepts and tools.
This third edition is a revised, updated, and greatly expanded version of previous edition of 2001. The 1300+ exercises contained within are not merely drill problems, but have been chosen to illustrate the concepts, illuminate the subject, and both inform and entertain the reader. A broad range of subjects is covered, including elementary aspects of probability and random variables, sampling, generating functions, Markov chains, convergence, stationary processes, renewals, queues, martingales, diffusions, L�vy processes, stability and self-similarity, time changes, and stochastic calculus including option pricing via the Black-Scholes model of mathematical finance. The text is intended to serve students as a companion for elementary, intermediate, and advanced courses in probability, random processes and operations research. It will also be useful for anyone needing a source for large numbers of problems and questions in these fields. In particular, this book acts as a companion to the authors' volume, Probability and Random Processes, fourth edition (OUP 2020).
This textbook provides a wide-ranging and entertaining indroduction to probability and random processes and many of their practical applications. It includes many exercises and problems with solutions.
Probability comes of age with this, the first dictionary of probability and its applications in English, which supplies a guide to the concepts and vocabulary of this rapidly expanding field. Besides the basic theory of probability and random processes, applications covered here include financial and insurance mathematics, operations research (including queueing, reliability, and inventories), decision and game theory, optimization, time series, networks, and communication theory, as well as classic problems and paradoxes. The dictionary is reliable, stable, concise, and cohesive. Each entry provides a rigorous definition, a sketch of the context, and a reference pointing the reader to the wider literature. Judicious use of figures makes complex concepts easier to follow without oversimplifying. As the only dictionary on the market, this will be a guiding reference for all those working in, or learning, probability together with its applications.
Since the publication of the first edition of this seminar book, the theory and applications of extremes and rare events have seen increasing interest. Laws of Small Numbers gives a mathematically oriented development of the theory of rare events underlying various applications. The new edition incorporates numerous new results on about 130 additional pages. Part II, added in the second edition, discusses recent developments in multivariate extreme value theory.
This book explains a procedure for constructing realistic stochastic differential equation models for randomly varying systems in biology, chemistry, physics, engineering, and finance. Introductory chapters present the fundamental concepts of random variables, stochastic processes, stochastic integration, and stochastic differential equations. These concepts are explained in a Hilbert space setting which unifies and simplifies the presentation.
Why does the academic study of international relations have limited impact on the policy community? When research results are inconsistent, inconclusive, and contradictory, a lack of scholarly consensus discourages policy makers, the business community, and other citizens from trusting findings and conclusions from IR research. In New Directions for International Relations, Alex Mintz and Bruce Russett identify differences in methods of analysis as one cause of these problematic results. They discuss the problem and set the stage for nine chapters by diverse scholars to demonstrate innovative new developments in IR theory and creative new methods that can lay the basis for greater consensus. Looking at areas of concern such as the relationship between lawmaking and the use of military force, the challenge of suppressing extremists without losing moderates, and the public health effects of civil conflict, contributors show how international relations research can generate reliable results that can be, and in fact are, used in the real world.