You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Now available in a fully revised and updated second edition, this well established textbook provides a straightforward introduction to the theory of probability. The presentation is entertaining without any sacrifice of rigour; important notions are covered with the clarity that the subject demands. Topics covered include conditional probability, independence, discrete and continuous random variables, basic combinatorics, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous worked examples and exercises to help build the important skills necessary for problem solving.
This guide provides a wide-ranging selection of illuminating, informative and entertaining problems, together with their solution. Topics include modelling and many applications of probability theory.
This concise introduction to probability theory is written in an informal tutorial style with concepts and techniques defined and developed as necessary. Examples, demonstrations, and exercises are used to explore ways in which probability is motivated by, and applied to, real life problems in science, medicine, gaming and other subjects of interest. It assumes minimal prior technical knowledge and is suitable for students taking introductory courses, those needing a working knowledge of probability theory and anyone interested in this endlessly fascinating and entertaining subject.
An introduction to simple stochastic processes and models, this text includes numerous exercises, problems and solutions, as well as covering key concepts and tools.
This volume of more than 1300 exercises and solutions in probability theory has two roles. It is both a freestanding book of exercises and solutions in probability theory, and a manual for students and teachers covering the exercises and problems in the companion volume Probability Theory and Random Processes, 4e.
This textbook provides a wide-ranging and entertaining indroduction to probability and random processes and many of their practical applications. It includes many exercises and problems with solutions.
Probability comes of age with this, the first dictionary of probability and its applications in English, which supplies a guide to the concepts and vocabulary of this rapidly expanding field. Besides the basic theory of probability and random processes, applications covered here include financial and insurance mathematics, operations research (including queueing, reliability, and inventories), decision and game theory, optimization, time series, networks, and communication theory, as well as classic problems and paradoxes. The dictionary is reliable, stable, concise, and cohesive. Each entry provides a rigorous definition, a sketch of the context, and a reference pointing the reader to the wider literature. Judicious use of figures makes complex concepts easier to follow without oversimplifying. As the only dictionary on the market, this will be a guiding reference for all those working in, or learning, probability together with its applications.
Since the publication of the first edition of this seminar book, the theory and applications of extremes and rare events have seen increasing interest. Laws of Small Numbers gives a mathematically oriented development of the theory of rare events underlying various applications. The new edition incorporates numerous new results on about 130 additional pages. Part II, added in the second edition, discusses recent developments in multivariate extreme value theory.
Probability is an area of mathematics of tremendous contemporary importance across all aspects of human endeavour. This book is a compact account of the basic features of probability and random processes at the level of first and second year mathematics undergraduates and Masters' students in cognate fields. It is suitable for a first course in probability, plus a follow-up course in random processes including Markov chains. A special feature is the authors' attention to rigorous mathematics: not everything is rigorous, but the need for rigour is explained at difficult junctures. The text is enriched by simple exercises, together with problems (with very brief hints) many of which are taken ...
This book explains a procedure for constructing realistic stochastic differential equation models for randomly varying systems in biology, chemistry, physics, engineering, and finance. Introductory chapters present the fundamental concepts of random variables, stochastic processes, stochastic integration, and stochastic differential equations. These concepts are explained in a Hilbert space setting which unifies and simplifies the presentation.