You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Supercapacitors: Materials, Design, and Commercialization provides a comprehensive overview of the latest research trends and opportunities in supercapacitors, particularly in terms of novel materials and electrolytes. The book addresses the transformation in supercapacitive technology from double layer capacitance to battery-type capacitance, providing a clear understanding of the conceptual differences between various charge storage processes for supercapacitors, charge storage based on materials and electrolytes, and calculation for capacitance for these charge processes. Detailed chapters discuss recent developments in materials, such as carbons, chalcogenides, MXene and phosphorene, var...
Supercapacitors: Materials, Design, and Commercialization provides a comprehensive overview of the latest research trends and opportunities in supercapacitors, and particularly in terms of novel materials and electrolytes.The book will address the transformation in supercapacitive technology from double layer capacitance to battery-type capacitance, providing a clear understanding of the conceptual differences between various charge storage processes for supercapacitors, charge storage based on materials and electrolytes, and calculation for capacitance for these charge processes. Detailed chapters discuss recent developments in materials, such as carbons, chalcogenides, MXene and phosphoren...
RENEWABLE ENERGY INNOVATIONS This critical text, designed for microbiologists, biotechnologists, entrepreneurs, process engineers, chemical engineers, electrical engineers, physicists, and environmentalists, assesses the current knowledge about lab-scale and large-scale production of renewable and sustainable fuels, chemicals, and materials. Global warming is having a huge impact on the world’s ecosystem. Glaciers have shrunk, ice on rivers and lakes is breaking up early, and plant and animal ranges have relocated. On a worldwide scale, the threat posed by climate change and pollution is obvious. A green and sustainable future necessitates using renewable resources to produce fuels, chemic...
This Special Issue of Energies has emerged as a result of the 1st International Conference on Nanofluids (https://icnf2019.com/), which was organized under the auspices of Nanouptake COST Action (Overcoming Barriers to Nanofluids Market Uptake, http://www.nanouptake.eu/) in Castelló (Spain), in June 2019. The foci of ICNf2019 were the production and the characterisation of nanofluids for different areas of applications in the energy fields, namely heat transfer, storage of thermal energy, boiling, and solar systems, as well as industrial applications and health and safety issues. The first conference edition on this topic gathered more than 200 participants from 45 different countries. More...
With escalating global population, increased consumption of fossil fuels, spiralling energy demand, rapid environmental degradation and global climate change, energy and environmental issues are receiving considerable attention worldwide from the purview of sustainable development. In order to address these complex and interlinked challenges, the development of new materials for affordable green energy technologies (batteries, supercapacitors, fuel cells and solar cells) and environmental remediation methods (adsorption, photocatalysis, separation, and sensing) is essential. Three-dimensional graphene-based macrostructures (3D GBMs) are of great interest in these applications given their lar...
The world is filled with electronics devices that use batteries and supercapacitors, such as laptops, cellphones, and cameras, creating the need for the efficient and effective production of good energy storage devices. The depletion of fossil fuels demands alternative sources of energy, which prompted the creation of solar cell (PV) technologies and fuel cells. The introduction of graphene oxides to these technologies help improve the performance of various energy storage and conversion devices. This book provides a broad review of graphene oxide synthesis and applications in various energy storage devices. The chapters explore various fundamental principles and the foundations of different energy conversion and storage devices with respect to their advancement due to emergence of graphene oxide, such as supercapacitors, batteries and fuel cells. This book will enable research towards improving the performance of various energy storage devices using graphene oxides and will be a valuable reference for researchers and scientists working across physics, engineering, and chemistry on different types of graphene oxide-based energy storage and conversion devices.
Metal Oxides in Supercapacitors addresses the fundamentals of metal oxide-based supercapacitors and provides an overview of recent advancements in this area. Metal oxides attract most of the materials scientists use due to their excellent physico-chemical properties and stability in electrochemical systems. This justification for the usage of metal oxides as electrode materials in supercapacitors is their potential to attain high capacitance at low cost. After providing the principles, the heart of the book discusses recent advances, including: binary metal oxides-based supercapacitors, nanotechnology, ternary metal oxides, polyoxometalates and hybrids. Moreover, the factors affecting the ch...
There is a growing interest in applying the UN's sustainable development goals to a variety of sectors. One can use certain principles of green chemistry in the emerging fields of nanoscience and nanotechnology. The green chemistry approach focuses on the creation of nanodimensional materials that have a low environmental impact, are cost-effective, and have no negative consequences on the environment. This book aims to summarise the different alternative green chemical routes. Furthermore, the book describes the use of nano-dimensional materials for sustainable energy generation and environmental remediation applications.
Supercapacitors are presently applied in various devices and have the potential to be used in many fields in the future. For example, the use of supercapacitors is currently limited not only to automobiles, buses, and trucks, which have been electrified recently, but also to railways and aircraft. We believe that these devices are the most suitable physical batteries for absorbing regenerative energy produced during motor regeneration; thus, further research and development in this direction is expected in the future.
Among electrode materials, inorganic materials have received vast consideration owing to their redox chemistry, chemical stability, high electrochemical performance, and high-power applications. These exceptional properties enable inorganic-based materials to find application in high-performance energy conversion and storage. The current advances in nanotechnology have uncovered novel inorganic materials by various strategies and their different morphological features may serve as a rule for future supercapacitor electrode design for efficient supercapacitor performance. Inorganic Nanomaterials for Supercapacitor Design depicts the latest advances in inorganic nanomaterials for supercapacito...