You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Probability theory is the mathematical theory of random (non-deterministic) phenomena. This book presents the latest research in the field.
In 2012, the Centre de Recherches Mathématiques was at the center of many interesting developments in geometric and spectral analysis, with a thematic program on Geometric Analysis and Spectral Theory followed by a thematic year on Moduli Spaces, Extremality and Global Invariants. This volume contains original contributions as well as useful survey articles of recent developments by participants from three of the workshops organized during these programs: Geometry of Eigenvalues and Eigenfunctions, held from June 4-8, 2012; Manifolds of Metrics and Probabilistic Methods in Geometry and Analysis, held from July 2-6, 2012; and Spectral Invariants on Non-compact and Singular Spaces, held from July 23-27, 2012. The topics covered in this volume include Fourier integral operators, eigenfunctions, probability and analysis on singular spaces, complex geometry, Kähler-Einstein metrics, analytic torsion, and Strichartz estimates. This book is co-published with the Centre de Recherches Mathématiques.
The book contains review articles on recent advances in first-passage phenomena and applications contributed by leading international experts. It is intended for graduate students and researchers who are interested in learning about this intriguing and important topic.
With the increasing role of porous solids in conventional and newly emerging technologies, there is an urgent need for a deeper understanding of fluid behaviour confined to pore spaces of these materials especially with regard to their transport properties. From its early years, NMR has been recognized as a powerful experimental technique enabling direct access to this information. In the last two decades, the methodological development of different NMR techniques to assess dynamic properties of adsorbed ensembles has been progressed. This book will report on these recent advances and look at new broader applications in engineering and medicine. Having both academic and industrial relevance, this unique reference will be for specialists working in the research areas and for advanced graduate and postgraduate studies who want information on the versatility of diffusion NMR.
New and striking results obtained in recent years from an intensive study of asymptotic combinatorics have led to a new, higher level of understanding of related problems: the theory of integrable systems, the Riemann-Hilbert problem, asymptotic representation theory, spectra of random matrices, combinatorics of Young diagrams and permutations, and even some aspects of quantum field theory.
This book is based on a series of lectures at the Mathematics Department of the University of Jena, developed in the period from 1995 up to 2015. It is completed by additional material and extensions of some basic results from the literature to more general metric spaces.This book provides a clear introduction to classical fields of fractal geometry, which provide some background for modern topics of research and applications. Some basic knowledge on general measure theory and on topological notions in metric spaces is presumed.
Fractals are intricate geometrical forms that contain miniature copies of themselves on ever smaller scales. This colorful book describes methods for producing an endless variety of fractal art using a computer program that searches through millions of equations looking for those few that can produce images having aesthetic appeal. Over a hundred examples of such images are included with a link to the software that produced these images, and can also produce many more similar fractals. The underlying mathematics of the process is also explained in detail.Other books by the author that could be of interest to the reader are Elegant Chaos: Algebraically Simple Chaotic Flows (J C Sprott, 2010) and Elegant Circuits: Simple Chaotic Oscillators (J C Sprott and W J Thio, 2020).
Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen 'heuristically' introduced the spectral o...
Fractalize That! A Visual Essay on Statistical Geometry brings a new class of geometric fractals to a wider audience of mathematicians and scientists. It describes a recently discovered random fractal space-filling algorithm. Connections with tessellations and known fractals such as Sierpinski are developed. And, the mathematical development is illustrated by a large number of colorful images that will charm the readers.The algorithm claims to be universal in scope, in that it can fill any spatial region with smaller and smaller fill regions of any shape. The filling is complete in the limit of an infinite number of fill regions. This book presents a descriptive development of the subject us...