You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Computer vision has made enormous progress in recent years, and its applications are multifaceted and growing quickly, while many challenges still remain. This book brings together a range of leading researchers to examine a wide variety of research directions, challenges, and prospects for computer vision and its applications. This book highlights various core challenges as well as solutions by leading researchers in the field. It covers such important topics as data-driven AI, biometrics, digital forensics, healthcare, robotics, entertainment and XR, autonomous driving, sports analytics, and neuromorphic computing, covering both academic and industry R&D perspectives. Providing a mix of breadth and depth, this book will have an impact across the fields of computer vision, imaging, and AI. Computer Vision: Challenges, Trends, and Opportunities covers timely and important aspects of computer vision and its applications, highlighting the challenges ahead and providing a range of perspectives from top researchers around the world. A substantial compilation of ideas and state-of-the-art solutions, it will be of great benefit to students, researchers, and industry practitioners.
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
As all aspects of our social and informational lives increasingly migrate online, the line between what is "real" and what is digitally fabricated grows ever thinner—and that fake content has undeniable real-world consequences. A History of Fake Things on the Internet takes the long view of how advances in technology brought us to the point where faked texts, images, and video content are nearly indistinguishable from what is authentic or true. Computer scientist Walter J. Scheirer takes a deep dive into the origins of fake news, conspiracy theories, reports of the paranormal, and other deviations from reality that have become part of mainstream culture, from image manipulation in the nine...
This book provides a comprehensive introduction to Conversational AI. While the idea of interacting with a computer using voice or text goes back a long way, it is only in recent years that this idea has become a reality with the emergence of digital personal assistants, smart speakers, and chatbots. Advances in AI, particularly in deep learning, along with the availability of massive computing power and vast amounts of data, have led to a new generation of dialogue systems and conversational interfaces. Current research in Conversational AI focuses mainly on the application of machine learning and statistical data-driven approaches to the development of dialogue systems. However, it is impo...
Routledge Encyclopedia of Technology and the Humanities is a pioneer attempt to introduce a wide range of disciplines in the emerging field of techno-humanities to the English-reading world. This book covers topics such as archaeology, cultural heritage, design, fashion, linguistics, music, philosophy, and translation. It has 20 chapters, contributed by 26 local and international scholars. Each chapter has its own theme and addresses issues of significant interest in the respective disciplines. References are provided at the end of each chapter for further exploration into the literature of the relevant areas. To facilitate an easy reading of the information presented in this volume, chapters have been arranged according to the alphabetical order of the topics covered. This Encyclopedia will appeal to researchers and professionals in the field of technology and the humanities, and can be used by undergraduate and graduate students studying the humanities.
This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes. Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes de...
The eight-volume set comprising LNCS volumes 9905-9912 constitutes the refereed proceedings of the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. The 415 revised papers presented were carefully reviewed and selected from 1480 submissions. The papers cover all aspects of computer vision and pattern recognition such as 3D computer vision; computational photography, sensing and display; face and gesture; low-level vision and image processing; motion and tracking; optimization methods; physicsbased vision, photometry and shape-from-X; recognition: detection, categorization, indexing, matching; segmentation, grouping and shape representation; statistical methods and learning; video: events, activities and surveillance; applications. They are organized in topical sections on detection, recognition and retrieval; scene understanding; optimization; image and video processing; learning; action activity and tracking; 3D; and 9 poster sessions.
Ruslan Mitkov's highly successful Oxford Handbook of Computational Linguistics has been substantially revised and expanded in this second edition. Alongside updated accounts of the topics covered in the first edition, it includes 17 new chapters on subjects such as semantic role-labelling, text-to-speech synthesis, translation technology, opinion mining and sentiment analysis, and the application of Natural Language Processing in educational and biomedical contexts, among many others. The volume is divided into four parts that examine, respectively: the linguistic fundamentals of computational linguistics; the methods and resources used, such as statistical modelling, machine learning, and corpus annotation; key language processing tasks including text segmentation, anaphora resolution, and speech recognition; and the major applications of Natural Language Processing, from machine translation to author profiling. The book will be an essential reference for researchers and students in computational linguistics and Natural Language Processing, as well as those working in related industries.
In an era where vehicular networks and Location-Based Services (LBS) are rapidly expanding, safeguarding location privacy has become a critical challenge. Privacy in Vehicular Networks delves into the complexities of protecting sensitive location data within the dynamic and decentralized environment of vehicular networks. This book stands out by addressing both the theoretical and practical aspects of location privacy, offering a thorough analysis of existing vulnerabilities and innovative solutions. This book meticulously examines the interplay between location privacy and the operational necessities of road networks. It introduces a differential privacy framework tailored specifically for ...