You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is a collection of lectures given during the 42nd Course of the International School of Subnuclear Physics. The contributions cover the most recent advances in theoretical physics and the latest results from current experimental facilities. In line with one of the aims of the school, which is to encourage and promote young physicists to achieve recognition at an international level, the studentsOCO recognized for their research excellence were given the opportunity to publish their work in this volume. Their contributions are joined by those from many distinguished lecturers in the field from around the world."
This book provides a clear and mystery-free presentation of the central concepts in thermodynamics — probability, entropy, Helmholtz energy and Gibbs energy. It presents the concepts of entropy, free energy and various formulations of the Second Law in a friendly, simple language. It is devoid of all kinds of fancy and pompous statements made by authors of popular science books who write on this subject. The book focuses on the Four Laws of Thermodynamics. As it is said in the dedication page, this book is addressed to readers who might have already been exposed to Atkins' book having a similar title. It challenges both the title, and the contents of Atkins' book, Four Laws That Drive The Universe. One can glean from the title of this new book that the author's views are diametrically opposed to the views of Atkins. The book is addressed to any curious and intelligent reader. It aims to tickle, and hopefully to satisfy your curiosity. It also aims to challenge your gray matter, and to enrich your knowledge by telling you some facts and ideas regarding the Four Laws of Thermodynamics.
The contributions in this volume discuss numerous hot topics of interdisciplinary interest in plasma physics, astrophysics, and fluid dynamics. It collects the articles presented at a Workshop that has gathered world experts with a broad spectrum of research interests.
A wide range of topics are covered, ranging from supernovae to active galactic nuclei, cosmic gamma rays to neutrinos and dark matter. The basic emphasis is on physics / astrophysics and experimental / observational techniques, scientific implications of current results, and prospects for future advances. The fields surveyed are in rapid development and the exploration of our high energy universe is proceeding rapidly, with exciting new discoveries. What unifies much of the new data is the idea of particle acceleration to enormous energies and the subsequent interactions of the particles with the local medium. It this focus that makes the book both timely and an important contribution to the field.
ASTROPHYSICS The new edition of the popular textbook for undergraduate astronomers, covers the “how” of astrophysics Astrophysics: Decoding the Cosmos, Second Edition, describes how information about the physical nature of stars and other celestial bodies is obtained and analyzed to gain a better understanding of the universe. This acclaimed introductory textbook makes the complex principles and theories underlying astrophysics accessible to students with basic knowledge of first-year calculus-based physics and introductory astronomy. Reader-friendly chapters explore physical processes using relevant examples and clear explanations of how radiation and particles are analyzed. Such analys...
This book presents the progress in cosmic ray physics following the recent results obtained by balloon, satellite and underground experiments. The following topics are reviewed: Composition and propagation of cosmic rays, trapping of charged particles in the earth's magnetic field, atmospheric neutrinos, and high energy photon measurements in space.
This book is about the definition of the Shannon measure of Information, and some derived quantities such as conditional information and mutual information. Unlike many books, which refer to the Shannon's Measure of information (SMI) as "Entropy," this book makes a clear distinction between the SMI and Entropy. In the last chapter, Entropy is derived as a special case of SMI. Ample examples are provided which help the reader in understanding the different concepts discussed in this book. As with previous books by the author, this book aims at a clear and mystery-free presentation of the central concept in Information theory — the Shannon's Measure of Information. This book presents the fun...
This book discusses entropy and the Second Law of Thermodynamics in such a way that everyone can understand its subject matter. Entropy is one of the most interesting concepts in physics. Although it is a well-defined concept, it is still perceived by even well-known scientists as a concept cloaked in mystery. It is also the most misused, and often abused, concept in physics. In order to understand entropy, one needs to understand the Shannon measure of information, and in order to grasp this idea, one must be familiar with some basic concepts of probability. Therefore, this book consists of three chapters: the first discusses probability, the second addresses Information Theory, and the third considers entropy and the Second Law of Thermodynamics. Readers will discover that the Second Law is nothing but a law of probability.
In The Evolution of Complex Spatial Expressions within the Romance Family, Thomas Hoelbeek offers a corpus-based historical study of a group of expressions in French and Italian. Applying a functional approach, he tackles adpositions containing the French noun travers or the Italian noun traverso, previously never analysed from a diachronic perspective. This study enriches our knowledge of the expressions analysed and their functioning in the past, but also in present-day French and Italian, providing diachronic observations regarding functional notions put to the test. Thomas Hoelbeek’s work also contributes to a better understanding of the grammaticalisation mechanisms of complex constructions, and shows that typologically related languages may evolve differently in their ways of representing space.
This volume contains pedagogical lectures on particle physics, nuclear astrophysics, relativistic heavy ion interactions and gravitational waves. In addition, numerous contributions provide up-to-date information on new experimental results at colliders, underground laboratories and nuclear astrophysics. This combination of pedagogical talks and topical short talks provide a comprehensive amount of information to the researchers.