You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage.
The volume presents the research work in understanding, modeling and quantifying the risks associated with different ways of implementing smart grid technology in power systems in order to plan and operate a modern power system with an acceptable level of reliability. Power systems throughout the world are undergoing significant changes creating new challenges to system planning and operation in order to provide reliable and efficient use of electrical energy. The appropriate use of smart grid technology is an important drive in mitigating these problems and requires considerable research activities, some of which (by researchers from academia and industry) are included in this volume: the reliability appraisal of smart grid technologies and their applications, micro-grids, assessment of plug-in hybrid vehicles and the system effects, smart system protection and reliability evaluation, demand response and smart maintenance of power system equipment.
Phosphorus (P) stands second to nitrogen in terms of its essentiality as a plant macronutrient, as well as due to its involvement in almost all plant developmental stages, primary and secondary plant metabolisms, maintenance of membrane structures, and in the structural skeleton of major biomolecules. An optimum P-supply also helps plants combat abiotic stress impacts. Most P in soil remains unavailable for uptake by plants. P-containing fertilizers are being added to agricultural lands to sustain high yields. Only the least amount of the applied P (20%–30%) is used by most cultivated plants, and the rest remains as legacy P (P surpluses), which eventually causes eutrophication. This book,...
Describes the use of power system component models and efficient computational techniques in the development of a new generation of programs representing the steady and dynamic states of electrical power systems. Presents main computational and transmission system developments. Derives steady state models of a.c. and d.c. power systems plant components, describes a general purpose phase a.c. load flow program emphasizing Newton Fast Decoupled Algorithm, and more. Considers all aspects of the power system in the dynamic state.
Since the 1970s, the Otago Medical School has in fact been three schools, based in Dunedin, Christchurch, and Wellington. Its graduates include many distinguished researchers and practitioners all over the world. Modeled on the Edinburgh School, and opera
Identify and Solve Key Electric-Power-Quality Problems and Ensure Reliable Power Delivery to All Customers Power Quality in Electrical Systems equips you with the latest engineering techniques for providing power quality to all customers, and includes vital information on manufacturing, data processing, and healthcare facilities. Based on an IEEE Professional Education course, the book is a practice-oriented engineering tutorial for solving key electric-power-quality problems. This skills-building resource is designed to improve job performance by taking you step-by-step through voltage distortion...harmonic current sources...power capacitors...corrections for power-quality problems ...switc...
In modern industries, electrical energy conversion systems consist of two main parts: electrical machines and power electronic converters. With global electricity use at an all-time high, uninterrupted operation of electrical power converters is essential. Reliability in Power Electronics and Electrical Machines: Industrial Applications and Performance Models provides an in-depth analysis of reliability in electrical energy converters as well as strategies for designing dependable power electronic converters and electrical machines. Featuring a comprehensive discussion on the topics of reliability design and measurement, failure mechanisms, and specific issues pertaining to quality, efficiency, and durability, this timely reference source offers practical examples and research-based results for use by engineers, researchers, and advanced-level students.