You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Foundations of Computational Intelligence Volume 1: Learning and Approximation: Theoretical Foundations and Applications Learning methods and approximation algorithms are fundamental tools that deal with computationally hard problems and problems in which the input is gradually disclosed over time. Both kinds of problems have a large number of applications arising from a variety of fields, such as algorithmic game theory, approximation classes, coloring and partitioning, competitive analysis, computational finance, cuts and connectivity, inapproximability results, mechanism design, network design, packing and covering, paradigms for design and analysis of approxi- tion and online algorithms,...
Foundations of Computational Intelligence Volume 6: Data Mining: Theoretical Foundations and Applications Finding information hidden in data is as theoretically difficult as it is practically important. With the objective of discovering unknown patterns from data, the methodologies of data mining were derived from statistics, machine learning, and artificial intelligence, and are being used successfully in application areas such as bioinformatics, business, health care, banking, retail, and many others. Advanced representation schemes and computational intelligence techniques such as rough sets, neural networks; decision trees; fuzzy logic; evolutionary algorithms; arti- cial immune systems;...
The LNCS journal Transactions on Computational Science reflects recent developments in the field of Computational Science, conceiving the field not as a mere ancillary science but rather as an innovative approach supporting many other scientific disciplines. The journal focuses on original high-quality research in the realm of computational science in parallel and distributed environments, encompassing the facilitating theoretical foundations and the applications of large-scale computations and massive data processing. It addresses researchers and practitioners in areas ranging from aerospace to biochemistry, from electronics to geosciences, from mathematics to software architecture, present...
Knowledge processing and decision making in agent-based systems constitute the key components of intelligent machines. The contributions included in the book are: Innovations in Knowledge Processing and Decision Making in Agent-Based Systems Towards Real-World HTN Planning Agents Mobile Agent-Based System for Distributed Software Maintenance Software Agents in New Generation Networks: Towards the Automation of Telecom Processes Multi-agent Systems and Paraconsistent Knowledge An Agent-based Negotiation Platform for Collaborative Decision-Making in Construction Supply Chain An Event-Driven Algorithm for Agents at the Web A Generic Mobile Agent Framework Toward Ambient Intelligence Developing Actionable Trading Strategies Agent Uncertainty Model and Quantum Mechanics Representation Agent Transportation Layer Adaptation System Software Agents to Enable Service Composition through Negotiation Advanced Technology Towards Developing Decentralized Autonomous Flexible Manufacturing Systems
The five-volume set LNCS 6782 - 6786 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2011, held in Santander, Spain, in June 2011. The five volumes contain papers presenting a wealth of original research results in the field of computational science, from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The topics of the fully refereed papers are structured according to the five major conference themes: geographical analysis, urban modeling, spatial statistics; cities, technologies and planning; computational geometry and applications; computer aided modeling, simulation, and analysis; and mobile communications.
This three-volume set constitutes the refereed proceedings of the International Conference on Computational Science and its Applications. These volumes feature outstanding papers that present a wealth of original research results in the field of computational science, from foundational issues in computer science and mathematics to advanced applications in almost all sciences that use computational techniques.
Text classification is becoming a crucial task to analysts in different areas. In the last few decades, the production of textual documents in digital form has increased exponentially. Their applications range from web pages to scientific documents, including emails, news and books. Despite the widespread use of digital texts, handling them is inherently difficult - the large amount of data necessary to represent them and the subjectivity of classification complicate matters. This book gives a concise view on how to use kernel approaches for inductive inference in large scale text classification; it presents a series of new techniques to enhance, scale and distribute text classification tasks. It is not intended to be a comprehensive survey of the state-of-the-art of the whole field of text classification. Its purpose is less ambitious and more practical: to explain and illustrate some of the important methods used in this field, in particular kernel approaches and techniques.
Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. F...
The tremendous growth in the availability of inexpensive computing power and easy availability of computers have generated tremendous interest in the design and imp- mentation of Complex Systems. Computer-based solutions offer great support in the design of Complex Systems. Furthermore, Complex Systems are becoming incre- ingly complex themselves. This research book comprises a selection of state-of-the-art contributions to topics dealing with Complex Systems in a Knowledge-based En- ronment. Complex systems are ubiquitous. Examples comprise, but are not limited to System of Systems, Service-oriented Approaches, Agent-based Systems, and Complex Distributed Virtual Systems. These are applicat...
The decision to invest in oil field development is an extremely complex problem, even in the absence of uncertainty, due to the great number of technological alternatives that may be used, to the dynamic complexity of oil reservoirs - which involves mul- phase flows (oil, gas and water) in porous media with phase change, and to the c- plicated combinatorial optimization problem of choosing the optimal oil well network, that is, choosing the number and types of wells (horizontal, vertical, directional, m- tilateral) required for draining oil from a field with a view to maximizing its economic value. This problem becomes even more difficult when technical uncertainty and e- nomic uncertainty a...