You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Material science is one of the most evolving fields of human activities. Invention and consequent introduction of new materials for practical and/or technological purposes requires as complete knowledge of the physical, chemical, and structural properties as possible to ensure proper and optimal usage of their new features. In order to understand the macroscopic behaviour, one has to search for their origin on a microscopic level. A good deal of microscopic information can be obtained through hyperfine interactions. Mossbauer spectroscopy offers a unique possibility for hyperfine interaction studies via probing the nearest order of resonant atoms. Materials which contain the respective isoto...
While there is a tremendous literature on the topic of wine and health ranging back to the days of Hippocrates, it is considered that there is an unlimited variety of wine, allowing for the association of senses, nutrition, and hedonism. The history of vine and wine has lasted for at least 7000 years. Vitis represent adaptable plants, and thanks to the large variety of strains, wine is an alchemical mix with unique properties, a rich and original composition in terms of polyphenols, and well known antioxidants. This explains why wine and health are closely linked to nutrition.
What Is Silicene Silicene is a two-dimensional allotrope of silicon, with a hexagonal honeycomb structure similar to that of graphene. Contrary to graphene, silicene is not flat, but has a periodically buckled topology; the coupling between layers in silicene is much stronger than in multilayered graphene; and the oxidized form of silicene, 2D silica, has a very different chemical structure from graphene oxide. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Silicene Chapter 2: 2D silica Chapter 3: Borophene Chapter 4: Germanene Chapter 5: Stanene Chapter 6: Plumbene Chapter 7: Allotropy Chapter 8: Silicon Chapter 9: Graphite oxide (II) Answering the public top questions about silicene. (III) Real world examples for the usage of silicene in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of silicene' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of silicene.
Nanophase Materials is the first and, as yet, the only comprehensive book published in this new and exciting area of materials science. It gives a broad overview of the revolutionary new field of nanophase materials; a view which spans the materials, physics, and chemistry research communities at a tutorial level that is suitable for advanced undergraduates, graduate students, postdoctoral researchers, and experts or would-be experts in the science of nanostructured materials. The articles are authored by many of the world's most prominent scientists in this field. The book covers the diverse methods for synthesizing nanophase materials, a variety of subsequent processing methodologies, what is known about the structures of these materials on various length scales from atomic to macroscopic, and the properties of these unique and novel materials. The materials properties covered are mechanical, electronic, optical, and magnetic and hence span a wide range of important new opportunities for technological applications.
Proceedings of the NATO Advanced Study Institute, Edmonton, Alberta, Canada, August 23-September 4, 1981
1. Introduction. There is much interest in the general subject of porous inorganic materials with respect to their use as sorbents or catalysts. Such inorganic solids may be microporous, mesoporous or macroporous according to the sizes of the pores within the solid. Often there is a range of pore sizes within any given solid and so there is special interest in the synthesis, characterisation and application of porous inorganic solids with well defined pores. Pores of diameter larger than 50 nm are generally termed macropores. Those with diameters of less than 2 nm are micropores and pores of intermediate size are called mesopores. Solids, which contain only mesopores, are correctly called me...
Atomically dispersed metal cations and small polyatomic cationic structures co-ordinated to the surface of porous matrices exhibit different properties from the same cationic species contained in a bulk oxide or supported on amorphous carriers. This subject is treated to an extensive review, showing how an understanding of it is essential to the development of a new generation of solid catalysts. There are also exciting opportunities to shape the catalytic properties of the transition metal cations in microporous and mesoporous matrices. The book covers both theoretical and experimental aspects, including the distribution of framework Al atoms in Si-rich zeolites, distribution and siting of charge-exchanged metal cations, electronic, adsorptive and catalytic properties of metal cations, and correlation of metal cation structure and siting with catalytic activity.
The Role of Colloidal Systems in Environmental Protection describes the importance of colloids in many applications that contribute to environmental protection, including drinking water and wastewater treatment, heavy metal remediation, treatment of radioactive materials, corrosion, and energy conversion. Knowledge of the physical and chemical composition of colloids is important to understand and accurately model the relevant processes. The book familiarizes the reader with the technological features of the application of colloids in environmental protection, and provides chemical engineers, researchers, and scientists in academic and corporate communities with the latest developments in th...