You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.
Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski's book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text ...
The Ontario conference drew workers from theoretical, applied, and algorithm finite field theory to share their recent findings applying finite fields to such areas as number theory, algebra, and algebraic geometry. The 21 topics include actions of linearized polynomials on the algebraic closure of a finite field, kernels and defaults, computing zeta functions over finite fields, and the state complexity of some long codes. No index. Member prices are $39 for institutions and $29 for individuals. Annotation copyrighted by Book News, Inc., Portland, OR
The notion of elation generalized quadrangle is a natural generalization to the theory of generalized quadrangles of the important notion of translation planes in the theory of projective planes. Almost any known class of finite generalized quadrangles can be constructed from a suitable class of elation quadrangles. In this book the author considers several aspects of the theory of elation generalized quadrangles. Special attention is given to local Moufang conditions on the foundational level, exploring, for instance, Knarr's question from the 1990s concerning the very notion of elation quadrangles. All the known results on Kantor's prime power conjecture for finite elation quadrangles are ...
This book constitutes the refereed proceedings of the Second International Workshop on the Arithmetic of Finite Fields, WAIFI 2008, held in Siena, Italy, in July 2008. The 16 revised full papers presented were carefully reviewed and selected from 34 submissions. The papers are organized in topical sections on structures in finite fields, efficient finite field arithmetic, efficient implementation and architectures, classification and construction of mappings over finite fields, and codes and cryptography.
This volume represents the refereed proceedings of the Fifth International Conference on Finite Fields and Applications (F q5) held at the University of Augsburg (Germany) from August 2-6, 1999, and hosted by the Department of Mathematics. The conference continued a series of biennial international conferences on finite fields, following earlier conferences at the University of Nevada at Las Vegas (USA) in August 1991 and August 1993, the University ofGlasgow (Scotland) in July 1995, and the University ofWaterloo (Canada) in August 1997. The Organizing Committee of F q5 comprised Thomas Beth (
Anja Schedel analyzes two models in the field of algorithmic game theory which both constitute bilevel problems in networks. The first model is a game-theoretic variant of the well-known Steiner forest problem, and one is interested in an optimal sharing of the cost of the Steiner forest. The author provides (and partially exactly characterizes) network structures which allow for cost-minimal pure Nash equilibria. The second model is motivated from privatized public roads, in which private, selfishly acting firms build roads, and as compensation for their investment, are allowed to set prices for using the roads. For a basic model of this situation, the author shows existence and uniqueness of pure Nash equilibria. The existence result requires a non-standard proof approach since techniques like Kakutani’s fixed point theorem cannot be applied directly.
Poised to become the leading reference in the field, the Handbook of Finite Fields is exclusively devoted to the theory and applications of finite fields. More than 80 international contributors compile state-of-the-art research in this definitive handbook. Edited by two renowned researchers, the book uses a uniform style and format throughout and
Computational algebraic number theory has been attracting broad interest in the last few years due to its potential applications in coding theory and cryptography. For this reason, the Deutsche Mathematiker Vereinigung initiated an introductory graduate seminar on this topic in Düsseldorf. The lectures given there by the author served as the basis for this book which allows fast access to the state of the art in this area. Special emphasis has been placed on practical algorithms - all developed in the last five years - for the computation of integral bases, the unit group and the class group of arbitrary algebraic number fields. Contents: Introduction • Topics from finite fields • Arith...
The Proceedings contain twenty selected, refereed contributions arising from the International Conference on Public-Key Cryptography and Computational Number Theory held in Warsaw, Poland, on September 11-15, 2000. The conference, attended by eightyfive mathematicians from eleven countries, was organized by the Stefan Banach International Mathematical Center. This volume contains articles from leading experts in the world on cryptography and computational number theory, providing an account of the state of research in a wide variety of topics related to the conference theme. It is dedicated to the memory of the Polish mathematicians Marian Rejewski (1905-1980), Jerzy Róøycki (1909-1942) and Henryk Zygalski (1907-1978), who deciphered the military version of the famous Enigma in December 1932 January 1933. A noteworthy feature of the volume is a foreword written by Andrew Odlyzko on the progress in cryptography from Enigma time until now.