You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents the physical concepts and tools to characterize and describe the formation of metastable solids from undercooled melts. Its aim is to facilitate understanding of the development of the science and technology of solidification of melts and to introduce new concepts within this exciting research field in order to fulfil the challenges of the future in the field of undercooled melts. A comprehensive description of the science and applications of the undercooling phenomenon is given. It is composed of several main parts: experimental techniques for undercooling; characterization of the undercooled melt as the first step in rapid solidification; introducing the concepts of modern theories of rapid dendrite and eutectic growth and their comparison with experimental results, and a survey of metastable materials formed from the non-equilibrium state of an undercooled melt.* Showing clear links to possible application of results obtained from basic research * The subject matter is multidisciplinary and will be of interest to material scientists, physicists, physical chemists, mechanical and electrical engineers
All metallic materials are prepared from the liquid state as their parent phase. Solidification is therefore one of the most important phase transformation in daily human life. Solidification is the transition from liquid to solid state of matter. The conditions under which material is transformed determines the physical and chemical properties of the as-solidified body. The processes involved, like nucleation and crystal growth, are governed by heat and mass transport. Convection and undercooling provide additional processing parameters to tune the solidification process and to control solid material performance from the very beginning of the production chain. To develop a predictive capabi...
One of the goals of materials science is to design alloys with pre-specified desirable technological properties. To achieve this goal, it is necessary to have a thorough understanding of the fundamental mechanisms underlying materials behavior. In particular, one must understand the effects on alloy properties caused by intentional changes in concentration and how the combinations of temperature, time and uncontrollable foreign impurities affect microstructure. In addition to the equilibrium phase information contained in phase diagrams, nonequilibrium dynamic processes and metastable phases are known to be crucial in determining materials properties. This volume brings together researchers ...
The book provides an introduction to all aspects of the physics of quasicrystals. The chapters, each written by an expert in this field, cover quasiperiodic tilings and the modeling of the atomic structure of quasicrystals. The electronic density of states and the calculation of the electronic structure play a key role in this introduction, as does an extensive discussion of the atomic dynamics. The study of defects in quasicrystals by high resolution electron microscopy and the computer simulations of defects and fracture in decorated tilings are important subjects for the application of these aperiodic crystals.
Selected, peer reviewed papers from the 2013 International Conference on Mechanical Engineering and Instrumentation (ICMEI 2013), December 31, 2013-January 2, 2014, Brisbane, Australia
Current interest in research of solidification of melts is focussed to understand crystal nucleation and crystal growth. They determine the solidified product with its physical properties. A detailed description of these processes lead to the development and validation of physical models, which may form the basis of quantitative modelling of solidification routes in e.g. casting and foundry processes in order to develop a predictive capability in the design of materials during solidification. This book, based on a symposium held at EUROMAT 2003 aims to gives an overview on current developments in the research of solidification and crystallisation of liquids. The materials of interest range from metals and their alloys over semiconductors and isolators to organic substances.
Bringing together the concerted efforts of the multicomponent materials community in one decisive reference work, this handbook covers all the important aspects from fundamentals to applications: thermodynamics, microscopic processes, solidification, simulation and modeling. As such, it provides a vital understanding of melt and solidification processes, treating all simulation techniques for continuous and discrete systems, such as molecular dynamics, Monte Carlo, and finite elements calculations.