You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many fields of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which applies equally to all these areas is given by quantum field theory.Written by the leading experts and understandable to non-specialists, this book provides an overview on the basic ideas and concepts of the method of nonequilibrium Green's functions. It is complemented by modern applications of the method to a variety of topics, such as optics and transport in dense plasmas and semiconductors; correlations, bound states and coherence; strong field effects and short-pulse lasers; nuclear matter and QCD.Authors include: Gordon Bayan, Pawel Danielewicz, Don DuBois, Hartmut Haug, Klaus Henneberger, Antti-Pekka Jauho, Jrn Kuoll, Dietrich Kremp, Pavel Lipavsky and Paul C Martin.
Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many areas of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which is equally applied to all these areas is given by quantum field theory. This book provides an overview of the basic ideas and concepts of the method of nonequilibrium Green's functions, written by the leading experts and presented in a way accessible to non-specialists and graduate students. It is complemented by invited review papers on modern applications of the method to a variety of topics, such as optics and quantum transport in semiconductors; superconductivity; strong field effects, QCD, and state-of-the-art computational concepts — from Green's functions to quantum Monte Carlo and time-dependent density functional theory.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many fields of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which applies equally to all these areas is given by quantum field theory.Written by the leading experts and understandable to non-specialists, this book provides an overview on the basic ideas and concepts of the method of nonequilibrium Green's functions. It is complemented by modern applications of the method to a variety of topics, such as optics and transport in dense plasmas and semiconductors; correlations, bound states and coherence; strong field effects and short-pulse lasers; nuclear matter and QCD.Authors include: Gordon Bayan, Pawel Danielewicz, Don DuBois, Hartmut Haug, Klaus Henneberger, Antti-Pekka Jauho, Jörn Kuoll, Dietrich Kremp, Pavel Lipavsky and Paul C Martin.
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
This book is a multi-purpose and user-friendly textbook covering both fundamentals (in thermodynamics and statistical mechanics) and numerous applications. The emphasis is on simple derivations of simple results which can be compared with experimental data. The first half of the book covers basic thermodynamics, statistical ensembles, Boltzmann and quantum statistics; and the second half covers magnetism, electrostatic interactions (solutions and plasmas), non-equilibrium statistical mechanics, polymers, superfluidity, renormalization theory, and other specialized topics. This book, while serving well as a reference book for research scientists, is especially suitable as a textbook for a one-year statistical mechanics course for undergraduate students in physics, chemistry, engineering, biology, and material sciences. Alternatively, the first 5 chapters of the book can be used as the textbook for an undergraduate one-semester combined thermodynamics/statistical mechanics course (or statistical thermodynamics).
The International Conference on Strongly Coupled Coulomb Systems was held on the campus of Boston College in Newton, Massachusetts, August 3–10, 1997. Although this conference was the first under a new name, it was the continuation of a series of international meetings on strongly coupled plasmas and other Coulomb systems that started with the NATO Summer Institute on Strongly Coupled Plasmas, almost exactly twenty years prior to this conference, in July of 1977 in Orleans la Source, France. Over the intervening period the field of strongly coupled plasmas has developed vigorously. In the 1977 meeting the emphasis was on computer (Monte Carlo and molecular dynamics) simulations which provi...
None
This book deals with the statistical theory of strongly coupled Coulomb systems. After an elementary introduction to the physics of nonideal plasmas, a presentation of the method of (nonequilibrium) Green's functions is given. On this basis, the dielectric, thermodynamic, transport, and relaxation properties are discussed systematically. Especially, the behavior of bound states in the surrounding plasma (lowering of the ionization energy), the ionization kinetics, and the equation of state of dense partially ionized hydrogen are each carefully investigated. Furthermore, generalized kinetic equations are derived which are also valid for short time scales. They are applied to ultra-fast processes and to plasmas in laser fields.
None