You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Risk assessment has become a dominant public policy tool for making choices, based on limited resources, to protect public health and the environment. It has been instrumental to the mission of the U.S. Environmental Protection Agency (EPA) as well as other federal agencies in evaluating public health concerns, informing regulatory and technological decisions, prioritizing research needs and funding, and in developing approaches for cost-benefit analysis. However, risk assessment is at a crossroads. Despite advances in the field, risk assessment faces a number of significant challenges including lengthy delays in making complex decisions; lack of data leading to significant uncertainty in ri...
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues ...
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
Research on gene drive systems is rapidly advancing. Many proposed applications of gene drive research aim to solve environmental and public health challenges, including the reduction of poverty and the burden of vector-borne diseases, such as malaria and dengue, which disproportionately impact low and middle income countries. However, due to their intrinsic qualities of rapid spread and irreversibility, gene drive systems raise many questions with respect to their safety relative to public and environmental health. Because gene drive systems are designed to alter the environments we share in ways that will be hard to anticipate and impossible to completely roll back, questions about the eth...
As political, economic, and environmental issues increasingly spread across the globe, the science of geography is being rediscovered by scientists, policymakers, and educators alike. Geography has been made a core subject in U.S. schools, and scientists from a variety of disciplines are using analytical tools originally developed by geographers. Rediscovering Geography presents a broad overview of geography's renewed importance in a changing world. Through discussions and highlighted case studies, this book illustrates geography's impact on international trade, environmental change, population growth, information infrastructure, the condition of cities, the spread of AIDS, and much more. The committee examines some of the more significant tools for data collection, storage, analysis, and display, with examples of major contributions made by geographers. Rediscovering Geography provides a blueprint for the future of the discipline, recommending how to strengthen its intellectual and institutional foundation and meet the demand for geographic expertise among professionals and the public.
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering te...
The Earth system functions and connects in unexpected ways - from the microscopic interactions of bacteria and rocks to the macro-scale processes that build and erode mountains and regulate Earth's climate. Efforts to study Earth's intertwined processes are made even more pertinent and urgent by the need to understand how the Earth can continue to sustain both civilization and the planet's biodiversity. A Vision for NSF Earth Sciences 2020-2030: Earth in Time provides recommendations to help the National Science Foundation plan and support the next decade of Earth science research, focusing on research priorities, infrastructure and facilities, and partnerships. This report presents a compelling and vibrant vision of the future of Earth science research.
Aquaculture now supplies half of the seafood and fisheries products consumed worldwide and is gaining international significance as a source of food and income. Future demands for seafood and fisheries products can only be met by expanded aquaculture production. Such production will likely become more intensive and will depend increasingly on nutritious and efficient aquaculture feeds containing ingredients from sustainable sources. To meet this challenge, Nutrient Requirements of Fish and Shrimp provides a comprehensive summary of current knowledge about nutrient requirements of fish and shrimp and supporting nutritional science. This edition incorporates new material and significant updates to information in the 1993 edition. It also examines the practical aspects of feeding of fish and shrimp. Nutrient Requirements of Fish and Shrimp will be a key resource for everyone involved in aquaculture and for others responsible for the feeding and care of fish and shrimp. It will also aid scientists in developing new and improved approaches to satisfy the demands of the growing aquaculture industry.