You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a collection of up-to-date research reviews dealing with various aspects of the structure and function of excitable cells. Its overall objective is to further the search for a better understanding of the mechanism of excitation on a structural and physicochemical basis. The chapters are written by active investigators from a variety of disciplines, repre senting many different points of view. Their complementary fields of expertise give this book the rare feature of extraordinary breadth. Excitability is a fundamental property of many biological systems. The mechanisms by which nerve impulses are initiated and propagated, and by which rhythmical activities are produced in nerve, muscle, and cardiac cells, can be fully elucidated only when the process of excitation is derived from fundamental principles applied to known structural forms, at both the macroscopic and the molecular level. The problems of excitation are complex, requiring knowledge of many aspects of cells, including their morphology, elec trobiology, chemical physics, and biochemistry.
MicroRNA Protocols provides diverse, novel, and useful descriptions of miRNAs in several species, including plants, worms, flies, fish, chicks, mice, and humans. These include some useful adaptations and applications that could be relevant to the wider research community who are already familiar with the identification of miRNAs. This volume will stimulate the reader to explore diverse ways to understanding the mechanism in which miRNAs facilitate the molecular aspects of the biomedical research.
Voltage-sensitive ion channels are macromolecules embedded in the membranes of nerve and muscle fibers of animals. Despite decades of intensive research under the traditional approach of gated structural pores, the relation between the structure of these molecules and their function remains enigmatic. This book examines physically oriented approaches not covered in other ion-channel books, and it develops a new physics-based approach to the problem of molecular excitability.
None