You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In recent years, there has been an upsurge of interest in using techniques drawn from probability to tackle problems in analysis. These applications arise in subjects such as potential theory, harmonic analysis, singular integrals, and the study of analytic functions. This book presents a modern survey of these methods at the level of a beginning Ph.D. student. Highlights of this book include the construction of the Martin boundary, probabilistic proofs of the boundary Harnack principle, Dahlberg's theorem, a probabilistic proof of Riesz' theorem on the Hilbert transform, and Makarov's theorems on the support of harmonic measure. The author assumes that a reader has some background in basic real analysis, but the book includes proofs of all the results from probability theory and advanced analysis required. Each chapter concludes with exercises ranging from the routine to the difficult. In addition, there are included discussions of open problems and further avenues of research.
The following analysis illustrates the underlying trends and relationships of U.S. issued patents of the subject company. The analysis employs two frequently used patent classification methods: US Patent Classification (UPC) and International Patent Classification (IPC). Aside from assisting patent examiners in determining the field of search for newly submitted patent applications, the two classification methods play a pivotal role in the characterization and analysis of technologies contained in collections of patent data. The analysis also includes the company’s most prolific inventors, top cited patents as well as foreign filings by technology area.
Surface contamination is of cardinal importance in a host of technologies and industries, ranging from microelectronics to optics to automotive to biomedical. Thus, the need to understand the causes of surface contamination and their removal is very patent. Generally speaking, there are two broad categories of surface contaminants: film-type and particulates. In the world of shrinking dimensions, such as the ever-decreasing size of microelectronic devices, there is an intensified need to understand the behavior of nanoscale particles and to devise ways to remove them to an acceptable level. Particles which were functionally innocuous a few years ago are ôkiller defectsö today, with serious...
This volume documents the proceedings of the Second Symposium on Particles on Surfaces: Detection, Adhesion and Removal held as part of the 19th Annual Meeting of the Fine Particle Society in Santa Clara, California, July 20-25, 1988. The premier symposium on this topic was l organized in 1986 and has been properly chronicled . Based on the success of these two events and the high interest evinced by the technical community, we plan to regularly hold symposia on this topic on a biennial basis and the next one is slated for August 20-24, 1990 in San Diego, California. l As pointed out in the Preface to the first volume , the topic of particles on surfaces is of paramount importance in legion ...
This book provides a strategic framework for cost efficient engineering of market moving patent portfolios by organizing patent engineering efforts around the problems that innovators solve for their customers and not the technologies developed to solve these problems. Patents are a vital asset in the modern business world. They allow patent holders to introduce new products in to a market while deterring other market players from simply copying innovative features without making comparable investments in research and development. In years past, a few patents may have provided adequate protection. That is no longer the case. In today's world, it is critical that innovative companies protect ...
Patents are a vital asset in the modern business world. They allow patent holders to introduce new products in to a market while deterring other market players from simply copying innovative features without making comparable investments in research and development. In years past, a few patents may have provided adequate protection. That is no longer the case. In today's world, it is critical that innovative companies protect the features of their products that give them a competitive advantage with a family or portfolio of patents that are strategically generated to protect the market position of the patent holder. A patent portfolio that deters competitors from introducing competitive products in a timely manner can be worth billions of dollars. Anything less than this is an expensive and possibly fatal distraction. This book provides a strategic framework for cost efficient engineering of patent portfolios that protect your investments in research and development and that extend the market advantages that these investments provide.