You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In our rapidly aging society, tendon and ligament injuries pose a tremendous socioeconomic burden with a great impact on mobility and patient quality of life. Understanding tendon/ligament development and maturation, pathogenesis, wound healing, tissue engineering, and regenerative medicine approaches will be crucial. In this collection, we aim to showcase tendon and ligament research that spans the gamut of basic science to pre-clinical translation. These topics include but are not limited to tendon/ligament development and maturation, the pathogenesis of tendon and ligament injury, isolation and modification of stem cells and their products for regenerative medicine, identification and del...
There is a continuous exchange of ideas taking place at the border of the biological and physical sciences in many areas of nanoscience. Nanotechnology uses biomimetic or bio-inspired processes to produce nanosized materials for applications in biology and other fields. In return, the fruits of nanotechnology are applied to expanding areas of biome
Hydrogen, as an energy carrier, is widely regarded as a potential cost effective, renewable, and clean energy alternative to petroleum in order to mitigate energy shortage and global climate warming issues that the world is currently facing. However, storage of hydrogen is a substantial challenge, especially for applications in vehicles with fuel cells that use proton-exchange membranes (PEMs). Therefore, scientific community has started focusing their research activities on developing advanced hydrogen storage materials through nanotechnology. The book presents a wide variety of nanostructured materials used for application in hydrogen storage, covering chemical and physical storage approaches. The research topics include computational design, synthesis, processing, fabrication, characterization, properties and applications of nanomaterials in hydrogen storage systems.
Hierarchical Micro/Nanostructured Materials: Fabrication, Properties, and Applications presents the latest fabrication, properties, and applications of hierarchical micro/nanostructured materials in two sections-powders and arrays. After a general introduction to hierarchical micro/nanostructured materials, the first section begins with a detailed
Robots may one day rule the world, but what is a robot-ruled Earth like? Many think that the first truly smart robots will be brain emulations or "ems." Robin Hanson draws on decades of expertise in economics, physics, and computer science to paint a detailed picture of this next great era in human (and machine) evolution - the age of em.
From everyday applications to the rise of automation, devices have become ubiquitous. Specific materials are employed in specific devices because of their particular properties, including electrical, thermal, magnetic, mechanical, ferroelectric, and piezoelectric. Materials for Devices discusses materials selection for optimal application and highlights current materials developments in gas sensors, optical devices, mechanoelectrical devices, and medical and biological devices. Explains how to select the right material for the right device Includes 2D materials, thin films, smart piezoelectric films, and more Presents details on organic solar cells Describes thin films in sensors, actuators, and LEDs Covers thin films and elastic polymers in biomedical devices Discusses growth and characterization of intrinsic magnetic topological insulators This work is aimed at researchers, technologists, and advanced students in materials and electrical engineering and related fields who are interested in developing sensors or devices.
As transportation systems for land, air, and space vehicles continue to grow increasingly sophisticated, more advanced materials are needed to support their development and commercialization. Materials for Land, Air, and Space Transportation details new materials development for these transportation applications, emphasizing physical properties, research theories, and cutting-edge processing technologies, as well as advanced high-precision inspection methodologies. • Covers materials, design, and manufacturing for lightweight vehicles, high-speed trains, fuel cell vehicles, and aerospace and aeronautical use. • Focuses on the newest material function and processing technologies, covering nanotechnology, modern additive manufacturing techniques, and physical and mechanical studies of structure-sensitive properties of materials. • Describes theoretical deduction, numerical simulation, and experimental studies of various materials. This reference will be of interest to engineers and researchers in the disciplines of materials, mechanical, and transportation engineering, and related areas.
Selected, peer reviewed papers from the Chinese Materials Conference 2015, July 10-14, 2015, Guiyang, China
This is an English translation of a Chinese textbook that has been designated a national planned university textbook, the highest award given to scientific textbooks in China. The book provides a complete overview of mechanical properties and fracture mechanics in materials science, mechanics, and physics. It details the macro- and micro-mechanical properties of metal structural materials, nonmetal structural materials, and various functional materials. It also discusses the macro and micro failure mechanism under different loadings and contains research results on thin film mechanics, smart material mechanics, and more.