You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is dedicated to the memory of Björn Jawerth. It contains original research contributions and surveys in several of the areas of mathematics to which Björn made important contributions. Those areas include harmonic analysis, image processing, and functional analysis, which are of course interrelated in many significant and productive ways. Among the contributors are some of the world's leading experts in these areas. With its combination of research papers and surveys, this book may become an important reference and research tool. This book should be of interest to advanced graduate students and professional researchers in the areas of functional analysis, harmonic analysis, image processing, and approximation theory. It combines articles presenting new research with insightful surveys written by foremost experts.
This volume is dedicated to our teacher and friend Hans Triebel. The core of the book is based on lectures given at the International Conference "Function Spaces, Differential Operators and Nonlinear Analysis" (FSDONA--01) held in Teistungen, Thuringia / Germany, from June 28 to July 4,2001, in honour of his 65th birthday. This was the fifth in a series of meetings organised under the same name by scientists from Finland (Helsinki, Oulu) , the Czech Republic (Prague, Plzen) and Germany (Jena) promoting the collaboration of specialists in East and West, working in these fields. This conference was a very special event because it celebrated Hans Triebel's extraordinary impact on mathematical a...
It is the main aim of this book to develop at an accessible, moderate level an $L_2$ theory for elliptic differential operators of second order on bounded smooth domains in Euclidean n-space, including a priori estimates for boundary-value problems in terms of (fractional) Sobolev spaces on domains and on their boundaries, together with a related spectral theory. The presentation is preceded by an introduction to the classical theory for the Laplace-Poisson equation, and some chapters provide required ingredients such as the theory of distributions, Sobolev spaces and the spectral theory in Hilbert spaces. The book grew out of two-semester courses the authors have given several times over a period of ten years at the Friedrich Schiller University of Jena. It is addressed to graduate students and mathematicians who have a working knowledge of calculus, measure theory and the basic elements of functional analysis (as usually covered by undergraduate courses) and who are seeking an accessible introduction to some aspects of the theory of function spaces and its applications to elliptic equations.
This book provides an introduction to the theory of quantum groups with emphasis on their duality and on the setting of operator algebras. Part I of the text presents the basic theory of Hopf algebras, Van Daele's duality theory of algebraic quantum groups, and Woronowicz's compact quantum groups, staying in a purely algebraic setting. Part II focuses on quantum groups in the setting of operator algebras. Woronowicz's compact quantum groups are treated in the setting of $C^*$-algebras, and the fundamental multiplicative unitaries of Baaj and Skandalis are studied in detail. An outline of Kustermans' and Vaes' comprehensive theory of locally compact quantum groups completes this part. Part III leads to selected topics, such as coactions, Baaj-Skandalis-duality, and approaches to quantum groupoids in the setting of operator algebras. The book is addressed to graduate students and non-experts from other fields. Only basic knowledge of (multi-) linear algebra is required for the first part, while the second and third part assume some familiarity with Hilbert spaces, $C^*$-algebras, and von Neumann algebras.
The first chapters of this book deal with Haar bases, Faber bases and some spline bases for function spaces in Euclidean $n$-space and $n$-cubes. These are used in the subsequent chapters to study sampling and numerical integration preferably in spaces with dominating mixed smoothness. The subject of the last chapter is the symbiotic relationship between numerical integration and discrepancy, measuring the deviation of sets of points from uniformity. This book is addressed to graduate students and mathematicians who have a working knowledge of basic elements of function spaces and approximation theory and who are interested in the subtle interplay between function spaces, complexity theory and number theory (discrepancy).
This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Most of the presented material is published here for the first time.
This volume presents the recent theory of function spaces, paying special attention to some recent developments related to neighboring areas such as numerics, signal processing, and fractal analysis. Local building blocks, in particular (non-smooth) atoms, quarks, wavelet bases and wavelet frames are considered in detail and applied to diverse problems, including a local smoothness theory, spaces on Lipschitz domains, and fractal analysis.
This book quickly introduces beginners to general group theory and then focuses on three main themes : finite group theory, including sporadic groups combinatorial and geometric group theory, including the Bass-Serre theory of groups acting on trees the theory of train tracks by Bestvina and Handel for automorphisms of free groups With its many examples, exercises, and full solutions to selected exercises, this text provides a gentle introduction that is ideal for self-study and an excellent preparation for applications. A distinguished feature of the presentation is that algebraic and geometric techniques are balanced. The beautiful theory of train tracks is illustrated by two nontrivial examples. Presupposing only a basic knowledge of algebra, the book is addressed to anyone interested in group theory: from advanced undergraduate and graduate students to specialists.
This is a collection of contributed papers which focus on recent results in areas of differential equations, function spaces, operator theory and interpolation theory. In particular, it covers current work on measures of non-compactness and real interpolation, sharp Hardy-Littlewood-Sobolev inequalites, the HELP inequality, error estimates and spectral theory of elliptic operators, pseudo differential operators with discontinuous symbols, variable exponent spaces and entropy numbers. These papers contribute to areas of analysis which have been and continue to be heavily influenced by the leading British analysts David Edmunds and Des Evans. This book marks their respective 80th and 70th birthdays.
This book features original research and survey articles on the topics of function spaces and inequalities. It focuses on (variable/grand/small) Lebesgue spaces, Orlicz spaces, Lorentz spaces, and Morrey spaces and deals with mapping properties of operators, (weighted) inequalities, pointwise multipliers and interpolation. Moreover, it considers Sobolev–Besov and Triebel–Lizorkin type smoothness spaces. The book includes papers by leading international researchers, presented at the International Conference on Function Spaces and Inequalities, held at the South Asian University, New Delhi, India, on 11–15 December 2015, which focused on recent developments in the theory of spaces with variable exponents. It also offers further investigations concerning Sobolev-type embeddings, discrete inequalities and harmonic analysis. Each chapter is dedicated to a specific topic and written by leading experts, providing an overview of the subject and stimulating future research.