You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This completely revised and updated fourth edition of the best-selling classic is a thorough treatment of the subject while remaining concise and readable. New additions include capillary electrophoresis, monolithic columns, zwitterion colums, DNA/RNA analysis, fundamentals of the science of IC, and micro methods. The whole is rounded off by handy tables with details on detection or elution conditions, among others.
This first book on the market covers the many new and important RNA species discovered over the past five years, explaining current methods for the enrichment, separation and purification of these novel RNAs. Building up from general principles of RNA biochemistry and biophysics, this book addresses the practical aspects relevant to the laboratory researcher throughout, while discussing the performance and potential problems of the methods discussed. An appendix contains a glossary with the important terms and techniques used in RNA analysis. By explaining the basic and working principles of the methods, the book allows biochemists and molecular biologists to gain much more expertise than by simply repeating a pre-formulated protocol, enabling them to select the procedure and materials best suited to the RNA analysis task at hand. As a result, they will be able to develop new protocols where needed and optimize and fine-tune the general purpose standard protocols that come with the purification equipment and instrumentation.
The development of molecules that selectively bind to nucleic acids has provided many details about DNA and RNA recognition. The range of such substances, such as metal complexes, peptides, oligonucleotides and a wide array of synthetic organic compounds, is as manifold as the functions of nucleic acids. Nucleic acid recognition sequences are often found in the major or minor groove of a double strand, while other typical interactions include intercalation between base pairs or the formation of triple or quadruple helices. One example of a binding mode that has recently been proposed is end stacking on such complex structures as the telomere tetraplex. In this comprehensive book, internation...
The United States Food and Drug Administration (FDA) and other regulatory bodies around the world require that impurities in drug substance and drug product levels recommended by the International Conference on Harmonisation (ICH) be isolated and characterized. Identifying process-related impurities and degradation products also helps us to understand the production of impurities and assists in defining degradation mechanisms. When this process is performed at an early stage, there is ample time to address various aspects of drug development to prevent or control the production of impurities and degradation products well before the regulatory filing and thus assure production of a high-quali...
This book is the first of its kind in the field of protein microarrays and addresses novel strategies for constructing highly functional and biocompatible microarrays for screening proteins. The list of authors consisting of world leading experts provide a roadmap for solving the complex challenges that are currently faced while monitoring protein-protein interactions over a wide range of microarray platforms. In doing so, they also offer a comprehensive overview of microarray surface chemistry, detection technologies, fabrication options for array development, and data analysis of numerous types of protein interactions. Topics covered include: -Types of biomolecular interactions -Surface chemistry -Detection technologies -Spotting technologies -Bioinformatics/data analysis. While primarily intended to serve as a reference for researchers and students embarking on the exciting fields of proteomics, drug discovery and clinical diagnostics, this technology is also expected to potentially impact the areas of food diagnostics, environmental monitoring and national security.
This publication presents the structure and function of biological membranes to improve the understanding of cells in both normal and pathogenic states. Recently, vast amounts of new information have been accumulated, especially about pathological conditions, and there is now much evidence correlating genotypes and phenotypes in normal and disease states. This book surveys the most recent findings in research on the molecular biology, biochemistry, and genetics of the membranes of human red blood cells.