You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Memory itself is inseparable from all other brain functions and involves distributed dynamic neural processes. A wealth of publications in neuroscience literature report that the concerted action of distributed multiple oscillatory processes (EEG oscillations) play a major role in brain functioning. The analysis of function-related brain oscillatio
MICHAEL S. GAZZANIGA The investigation of the human brain and mind involves a myriad of ap proaches. Cognitive neuroscience has grown out of the appreciation that these approaches have common goals that are separate from other goals in the neural sciences. By identifying cognition as the construct of interest, cognitive neuro science limits the scope of investigation to higher mental functions, while simultaneously tackling the greatest complexity of creation, the human mind. The chapters of this collection have their common thread in cognitive neuroscience. They attack the major cognitive processes using functional stud ies in humans. Indeed, functional measures of human sensation, percepti...
Locating Consciousness argues that our qualitative experiences should be aligned with the activity of a single and distinct memory system in our mind/brain. Spelling out in detail what we do and do not know about phenomenological experience, this book denies the common view of consciousness as a central decision-making system. Instead, consciousness is viewed as a lower level dynamical structure underpinning our information processing. This new perspective affords novel solutions to a wide range of problems: the absent qualia, the binding problem, the inverted spectra, the specter of epiphenomenalism, the explanatory gap, the distinction between objective and subjective, and the general skeptical doubts about the viability of the naturalist project itself. Drawing on recent data in psychology and neuroscience, Locating Consciousness also discusses when we become conscious and when we should think other animals are conscious. (Series A)
Neuroscience is ripe for a paradigm change as Freeman and Mountcastle describe. Brain Oscillations provide an important key to this change. In this book the functional importance of the brain's multiple oscillations is treated with an integrative scope. According to the author, neurophysiology and cognition demand integrative approaches similar to those of Galilei and Newton in physics and of Darwin in biology. Not only the human brain but also lower brains and ganglia of invertebrates are treated with electrophysical methods. Experiments on sensory registration, perception, movement, and cognitive processes related to attention, learning, and memory are described. A synopsis on brain functions leads to a new neuron assemblies doctrine, extending the concept of Sherrington, and new trends in this field. The book will appeal to scientists and graduate students.
This book constitutes the thoroughly refereed proceedings of the Second International Conference on Machine Learning for Networking, MLN 2019, held in Paris, France, in December 2019. The 26 revised full papers included in the volume were carefully reviewed and selected from 75 submissions. They present and discuss new trends in deep and reinforcement learning, pattern recognition and classification for networks, machine learning for network slicing optimization, 5G system, user behavior prediction, multimedia, IoT, security and protection, optimization and new innovative machine learning methods, performance analysis of machine learning algorithms, experimental evaluations of machine learning, data mining in heterogeneous networks, distributed and decentralized machine learning algorithms, intelligent cloud-support communications, ressource allocation, energy-aware communications, software de ned networks, cooperative networks, positioning and navigation systems, wireless communications, wireless sensor networks, underwater sensor networks.
This volume covers recent developments in the design, operation, and management of mobile telecommunication and computer systems. Uncertainty regarding loading and system parameters leads to challenging optimization and robustness issues. Stochastic modeling combined with optimization theory ensures the optimum end-to-end performance of telecommunication or computer network systems. In view of the diverse design options possible, supporting models have many adjustable parameters and choosing the best set for a particular performance objective is delicate and time-consuming. An optimization based approach determines the optimal possible allocation for these parameters. Researchers and graduate students working at the interface of telecommunications and operations research will benefit from this book. Due to the practical approach, this book will also serve as a reference tool for scientists and engineers in telecommunication and computer networks who depend upon optimization.
Presents original research results on the leading edge of psychology research. Each article has been carefully selected in an attempt to present substantial research results across a broad spectrum.
Since the days of Galileo, time has been a fundamental variable in scientific attempts to understand the natural world. Once the first recordings of electrical activity in the brain had been made, it became clear that electrical signals from the brain consist of very complex temporal patterns. This can now be demonstrated by recordings at the singl
In the spring of 1987, I was in Havana, Cuba, where I was participating in planning a large-scale longitudinal study of the neurophysiological, neurochemical, and behavioral characteristics of cohorts of patients with cerebrovascular disease, depression, senile dementia, schizophrenia, or learning disabilities; and also part of this study were their first-degree blood relatives. This study was the outgrowth of a long-term project on the practical application of computer methods for the evaluation of brain electrical activity related to anatomical integrity, maturational development, and sensory, perceptual;·-and cognitive processes, especially in chil dren. For many years, that project had ...
This volume looks at the latest advancements in imaging neuroscience methods using magnetic resonance imaging (MRI) and electroencephalography (EEG) to study the healthy and diseased brain. The chapters in this book are organized into five parts. Parts One and Two cover an introduction to this field and the latest use of molecular models. Part Three explores neurophysiological methods for assessment, such as quantitative EEG and event-related potentials. Part Four discusses the advances and innovations made in computational anatomy, and Part Five addresses the challenges faced by researchers prior to the computational neuroscience to find wider translational applications in the field of psychiatry and mental health. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Cutting-edge and comprehensive, Computational Neuroscience is a valuable tool for researchers in the psychiatry and mental health fields who want to learn more about ways to incorporate computational approaches into utility and validity of clinical methods.