You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book reviews methods for the analysis of astronomical datasets, particularly emphasizing very large databases arising from both existing and forthcoming projects, as well as current large-scale computer simulation studies. Leading experts give overviews of cutting-edge methods applicable in the area of astronomical data mining.
This book discusses many of the recent theoretical and observational developments that have significant implications for astronomy and astrophysics. The main themes are (i) cosmology, (ii) gravitational wave astronomy and gravitational physics, (iii) stellar astrophysics, and (iv) active galactic nuclei and disk accretion. There are also contributions on the solar system. Contents: Cosmology: New Cosmological Data and the OCyBest-FitOCO Universe (O Lahav); Measuring the Universe with the Cosmic Microwave Background (D Barbosa & M Chu); Initial Conditions for Hybrid Inflation (L E Mendes & A R Liddle); The Density Parameter in Scalar Field Cosmologies (J P Mimoso & A Nunes); Relativistic Astr...
The conference was aimed at promoting contacts between scientists involved in solar-terrestrial physics, space physics, astroparticle physics and cosmology both from the theoretical and the experimental approach. The conference was devoted to physics and physics requirements, survey of theoretical models and performances of detectors employed (or to be employed) in experiments for fundamental physics, astroparticle physics, astrophysics research and space environment — including Earth magnetosphere and heliosphere and solar-terrestrial physics. Furthermore, cosmic rays have been used to extend the scientific research experience to teachers and students with air shower arrays and other tech...
Fundamentals of Nuclear Physics gives elementary understanding of nuclear and particle physics. The textbook offers an overview of the subject, providing students with a basic understanding about 1) the atomic structure and the nucleus, 2) equipment such as particle detectors, particle accelerators, and nuclear reactors, 3) radioactivity, and 4) elementary particles. Each chapter provides fundamental theoretical and experimental knowledge required for students to strengthen their concepts. Other key features of the book include: - Structured chapters designed for easy reading and stimulating interest for learners - Sophisticated figures - Thoroughly solved equations - Bibliographic references for further reading - Updated information about different types of nuclear reactors - Information about nuclear astrophysics Fundamentals of Nuclear Physics is suitable for introductory undergraduate courses in nuclear physics as well as more innovative courses geared towards nuclear engineering.
The Marcel Grossmann Meetings are three-yearly forums that meet to discuss recent advances in gravitation, general relativity and relativistic field theories, emphasizing their mathematical foundations, physical predictions and experimental tests. These meetings aim to facilitate the exchange of ideas among scientists, to deepen our understanding of space-time structures, and to review the status of ongoing experiments and observations testing Einstein's theory of gravitation either from ground or space-based experiments. Since the first meeting in 1975 in Trieste, Italy, which was established by Remo Ruffini and Abdus Salam, the range of topics presented at these meetings has gradually wide...
Dark matter is among the most important open problems in modern physics. Aimed at graduate students and researchers, this book describes the theoretical and experimental aspects of the dark matter problem in particle physics, astrophysics and cosmology. Featuring contributions from 48 leading theorists and experimentalists, it presents many aspects, from astrophysical observations to particle physics candidates, and from the prospects for detection at colliders to direct and indirect searches. The book introduces observational evidence for dark matter along with a detailed discussion of the state-of-the-art of numerical simulations and alternative explanations in terms of modified gravity. It then moves on to the candidates arising from theories beyond the Standard Model of particle physics, and to the prospects for detection at accelerators. It concludes by looking at direct and indirect dark matter searches, and the prospects for detecting the particle nature of dark matter with astrophysical experiments.
World-leading researchers, including Nobel Laureates, explore the most basic questions of science, philosophy, and the nature of existence.
This collection of papers presents ideas and problems arising over the past 100 years regarding classical and quantum gravity, gauge theories of gravity, and spacetime transformations of accelerated frames. Both Einstein's theory of gravity and the Yang-Mills theory are gauge invariant. The invariance principles in physics have transcended both kinetic and dynamic properties and are at the very heart of our understanding of the physical world. In this spirit, this book attempts to survey the development of various formulations for gravitational and Yang-Mills fields and spacetime transformations of accelerated frames, and to reveal their associated problems and limitations.The aim is to pres...