You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
First Published in 1995. In the past decade or two, the most important theoretical perspective to emerge in mathematics education has been that of constructivism. This burst onto the international scene at the controversial Eleventh International Conference on the Psychology of Mathematics Education in Montreal in the summer of 1987. No one there will forget von Glasersfeld's authoritative plenary presentation on radical constructivism, and his replies to critics. Ironically, the conference, at which attacks on radical constructivism were perhaps intended to expose fatally its weaknesses, served as a platform from which the theory was launched to widespread international acceptance and app...
Constructivism is one of the most influential theories in contemporary education and learning theory. It has had great influence in science education. The papers in this collection represent, arguably, the most sustained examination of the theoretical and philosophical foundations of constructivism yet published. Topics covered include: orthodox epistemology and the philosophical traditions of constructivism; the relationship of epistemology to learning theory; the connection between philosophy and pedagogy in constructivist practice; the difference between radical and social constructivism, and an appraisal of their epistemology; the strengths and weaknesses of the Strong Programme in the sociology of science and implications for science education. The book contains an extensive bibliography. Contributors include philosophers of science, philosophers of education, science educators, and cognitive scientists. The book is noteworthy for bringing this diverse range of disciplines together in the examination of a central educational topic.
Over the last twenty-five years Ernst von Glasersfeld has had a tremendous impact on mathematics and science education through his fundamental insights into the nature of knowledge and knowing. Radical Constructivism in Action is a new volume of papers honouring his work by building on his model of knowing. The contributions by leading researchers present constructivism in action, tying the authors' actions regarding practical problems of mathematics and science education, philosophy, and sociology to their philosophical constraints, giving meaning to constructivism operationally. The book begins with a retrospective analogy between radical constructivism's emergence and changes in what is thought of as "certain" scientific knowledge. It aims to increase understanding of constructivism and Glasersfeld's achievement, and is vibrant evidence of the continued vitality of research in the constructivism tradition.
This volume emphasizes students' inferred mathematical experiences as the starting point in the theory-building process. The book addresses conceptual constructions, including multiplicative notions, fractions, algebra, and the fundamental theorem of calculus, and theoretical constructs such as the crucial role of language and symbols, and the importance of dynamic imagery.
This volume provides a needed elaboration of theories and potential applications of constructivism in science education. Although the term "constructivism" is used widely, there has been a dearth of materials to guide science educators concerning the potential of constructivism to influence what is done in the field. In fact, there has been a tendency for constructivism to be viewed as a method that can be used in a classroom. This view tends to diminish the power of constructivism as a way of thinking about education, and in particular, about science education. The chapters in this book address the need to document the theoretical roots of constructivism and to describe how practitioners ha...
Currents such as epistemological and social constructivism, postmodernism, and certain forms of multiculturalism that had become fashionable within science education circles in the last decades lost sight of critical inquiry as the core aim of education. In this book we develop an account of education that places critical inquiry at the core of education in general and science education in particular. Since science constitutes the paradigm example of critical inquiry, we explain the nature of science, paying particular attention to scientific methodology and scientific modeling and at the same time showing their relevance in the science classroom. We defend a universalist, rationalist, and objectivist account of science against epistemological and social constructivist views, postmodernist approaches and epistemic multiculturalist accounts.
Mathematics is the science of acts without things - and through this, of things one can define by acts. 1 Paul Valéry The essays collected in this volume form a mosaik of theory, research, and practice directed at the task of spreading mathematical knowledge. They address questions raised by the recurrent observation that, all too frequently, the present ways and means of teaching mathematics generate in the student a lasting aversion against numbers, rather than an understanding of the useful and sometimes enchanting things one can do with them. Parents, teachers, and researchers in the field of education are well aware of this dismal situation, but their views about what causes the wide-s...
Barbara Jaworski addresses a number of questions that are central to research on reform in mathematics education today. In this volume she attempts to chart critically yet honestly her own developing ideas as she undertakes a several-year-long enquiry into mathematics teaching and gives a very personal account of her developing conceptions, conjectures, thoughts and reflections. The author accounts for her research both genetically and biographically, simultaneously restructuring the development of her ideas and giving a rigorous, critical and reflective account.
Learning and teaching complex cultural knowledge calls for meaningful participation in different kinds of symbolic practices, which in turn are supported by a wide range of external representations, as gestures, oral language, graphic representations, writing and many other systems designed to account for properties and relations on some 2- or 3-dimensional objects.