You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book covers the statistical mechanics approach to computational solution of inverse problems, an innovative area of current research with very promising numerical results. The techniques are applied to a number of real world applications such as limited angle tomography, image deblurring, electical impedance tomography, and biomagnetic inverse problems. Contains detailed examples throughout and includes a chapter on case studies where such methods have been implemented in biomedical engineering.
As industrial processes and their corresponding control models increase in complexity, the data provided by traditional point sensors is no longer adequate to ensure product quality and cost-effective operation. Process Imaging for Automatic Control demonstrates how in-process imaging technologies surpass the limitations of traditional monitoring systems by providing real-time multidimensional measurement and control data. Combined with suitable data extraction and control schemes, such systems can optimize the performance of a wide variety of industrial processes. Contributed by leading international experts, Process Imaging for Automatic Control offers authoritative, comprehensive coverage...
This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.
Professor Ralph Kleinman was director of the Center for the Mathematics of Waves and held the UNIDEL Professorship of the University of Delaware. Before his death in 1998, he made major scientific contributions in the areas of electromagnetic scattering, wave propagation, and inverse problems. He was instrumental in bringing together the mathematic
This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approache...
Get up-to-speed on the theory, principles and design of vacuum electron devices.
In nature, plants are constantly challenged by various abiotic and biotic stresses that can restrict their growth, development and yields. In the course of their evolution, plants have evolved a variety of sophisticated and efficient mechanisms to sense, respond to, and adapt to changes in the surrounding environment. A common defensive mechanism activated by plants in response to abiotic stress is the production and accumulation of compatible solutes (also called osmolytes). This include amino acids (mainly proline), amines (such as glycinebetaine and polyamines), and sugars (such as trehalose and sugar alcohols), all of which are readily soluble in water and non-toxic at high concentration...
In recent years, there has been steady progress in the research of electrical impedance tomography (EIT), leading to important developments. These developments have excited interest in practitioners and researchers from a broad range of disciplines, including mathematicians devoted to uniqueness proofs and inverse problems, physicists dealing with bioimpedance, electronic engineerers involved in developing and extending its applications, and clinicians wishing to take advantage of this powerful new imaging method. With contributions from leading international researchers, Electrical Impedance Tomography: Methods, History and Applications provides an up-to-date review of the progress of EIT, ...