You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Generalized Linear Models for Categorical and Continuous Limited Dependent Variables is designed for graduate students and researchers in the behavioral, social, health, and medical sciences. It incorporates examples of truncated counts, censored continuous variables, and doubly bounded continuous variables, such as percentages. The book provides broad, but unified, coverage, and the authors integrate the concepts and ideas shared across models and types of data, especially regarding conceptual links between discrete and continuous limited dependent variables. The authors argue that these dependent variables are, if anything, more common throughout the human sciences than the kind that suit ...
Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner. Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized stru...
Drawing on the work of internationally acclaimed experts in the field, Handbook of Item Response Theory, Volume Two: Statistical Tools presents classical and modern statistical tools used in item response theory (IRT). While IRT heavily depends on the use of statistical tools for handling its models and applications, systematic introductions and reviews that emphasize their relevance to IRT are hardly found in the statistical literature. This second volume in a three-volume set fills this void. Volume Two covers common probability distributions, the issue of models with both intentional and nuisance parameters, the use of information criteria, methods for dealing with missing data, and model identification issues. It also addresses recent developments in parameter estimation and model fit and comparison, such as Bayesian approaches, specifically Markov chain Monte Carlo (MCMC) methods.
Unlike other forms of adaptive testing, multistage testing (MST) is highly suitable for testing educational achievement because it can be adapted to educational surveys and student testing. This volume provides the first unified source of information on the design, psychometrics, implementation, and operational use of MST. It shows how to apply theoretical statistical tools to testing in novel and useful ways. It also explains how to explicitly tie the assumptions made by each model to observable (or at least inferable) data conditions.
Modern Methods for Evaluating Your Social Science Data With recent advances in computing power and the widespread availability of political choice data, such as legislative roll call and public opinion survey data, the empirical estimation of spatial models has never been easier or more popular. Analyzing Spatial Models of Choice and Judgment with R demonstrates how to estimate and interpret spatial models using a variety of methods with the popular, open-source programming language R. Requiring basic knowledge of R, the book enables researchers to apply the methods to their own data. Also suitable for expert methodologists, it presents the latest methods for modeling the distances between p...
There is no shortage of incentives to study and reduce poverty in our societies. Poverty is studied in economics and political sciences, and population surveys are an important source of information about it. The design and analysis of such surveys is principally a statistical subject matter and the computer is essential for their data compilation and processing. Focusing on The European Union Statistics on Income and Living Conditions (EU-SILC), a program of annual national surveys which collect data related to poverty and social exclusion, Statistical Studies of Income, Poverty and Inequality in Europe: Computing and Graphics in R presents a set of statistical analyses pertinent to the gen...
This book constitutes the refereed proceedings of the 4th International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction, held in College Park, MD, USA, March 29-31, 2011. The 48 papers and 3 keynotes presented in this volume were carefully reviewed and selected from 88 submissions. The papers cover a wide range of topics including social network analysis; modeling; machine learning and data mining; social behaviors; public health; cultural aspects; and effects and search.
An Update of the Most Popular Graduate-Level Introductions to Bayesian Statistics for Social ScientistsNow that Bayesian modeling has become standard, MCMC is well understood and trusted, and computing power continues to increase, Bayesian Methods: A Social and Behavioral Sciences Approach, Third Edition focuses more on implementation details of th
This book constitutes the refereed proceedings of the Third International Conference on Social Computing, Behavioral Modeling, and Prediction, SBP 2010, held in Bethseda, MD, USA, in March 2010. The 26 revised full papers and 23 revised poster papers presented together with 4 invited and keynote papers were carefully reviewed and selected from 78 initial submissions. The papers cover a wide range of interesting topics such as social network analysis, modeling, machine learning and data mining, social behaviors, public health, cultural aspects, effects and search.