You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
This book presents functional analysis over arbitrary valued fields and investigates normed spaces and algebras over fields with valuation, with attention given to the case when the norm and the valuation are nonarchimedean. It considers vector spaces over fields with nonarchimedean valuation.
This book presents a detailed development of the divergence theorem. The framework is that of Lebesgue integration-no generalized Riemann integrals of Henstock-Kurzweil variety are involved. The first part of the book establishes the divergence theorem by a combinatorial argument involving dyadic cubes. Only elementary properties of the Lebesgue integral and Hausdorff measures are used. The second part introduces the sets of finite perimeter and the last part proves the general divergence theorem for bounded vector fields.
As the Earth`s surface deviates from its spherical shape by less than 0.4 percent of its radius and today’s satellite missions collect their gravitational and magnetic data on nearly spherical orbits, sphere-oriented mathematical methods and tools play important roles in studying the Earth’s gravitational and magnetic field. Geomathematically Oriented Potential Theory presents the principles of space and surface potential theory involving Euclidean and spherical concepts. The authors offer new insight on how to mathematically handle gravitation and geomagnetism for the relevant observables and how to solve the resulting potential problems in a systematic, mathematically rigorous framewor...
Approximation Theory and Functional Analysis
A presentation of results in p-adic Banach spaces, spaces over fields with an infinite rank valuation, Frechet (and locally convex) spaces with Schauder bases, function spaces, p-adic harmonic analysis, and related areas. It showcases research results in functional analysis over nonarchimedean valued complete fields. It explores spaces of continuous functions, isometries, Banach Hopf algebras, summability methods, fractional differentiation over local fields, and adelic formulas for gamma- and beta-functions in algebraic number theory.
Differential equations with "maxima"-differential equations that contain the maximum of the unknown function over a previous interval-adequately model real-world processes whose present state significantly depends on the maximum value of the state on a past time interval. More and more, these equations model and regulate the behavior of various tec
This book discusses general topological algebras; space C(T,F) of continuous functions mapping T into F as an algebra only (with pointwise operations); and C(T,F) endowed with compact-open topology as a topological algebra C(T,F,c). It characterizes the maximal ideals and homomorphisms closed maximal ideals and continuous homomorphisms of topological algebras in general and C(T,F,c) in particular. A considerable inroad is made into the properties of C(T,F,c) as a topological vector space. Many of the results about C(T,F,c) serve to illustrate and motivate results about general topological algebras. Attention is restricted to the algebra C(T,R) of real-valued continuous functions and to the pursuit of the maximal ideals and real-valued homomorphisms of such algebras. The chapter presents the correlation of algebraic properties of C(T,F) with purely topological properties of T. The Stone–Cech compactification and the Wallman compactification play an important role in characterizing the maximal ideals of certain topological algebras.
The Separable Galois Theory of Commutative Rings, Second Edition provides a complete and self-contained account of the Galois theory of commutative rings from the viewpoint of categorical classification theorems and using solely the techniques of commutative algebra. Along with updating nearly every result and explanation, this edition contains a n