You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This new edition of Mathematics for Dynamic Modeling updates a widely used and highly-respected textbook. The text is appropriate for upper-level undergraduate and graduate level courses in modeling, dynamical systems, differential equations, and linear multivariable systems offered in a variety of departments including mathematics, engineering, computer science, and economics. The text features many different realistic applications from a wide variety of disciplines. The book covers important tools such as linearization, feedback concepts, the use of Liapunov functions, and optimal control. This new edition is a valuable tool for understanding and teaching a rapidly growing field. Practitioners and researchers may also find this book of interest. Contains a new chapter on stability of dynamic models Covers many realistic applications from a wide variety of fields in an accessible manner Provides a broad introduction to the full scope of dynamical systems Incorporates new developments such as new models for chemical reactions and autocatalysis Integrates MATLAB throughout the text in both examples and illustrations Includes a new introduction to nonlinear differential equations
In this fascinating book, mathematician Ed Beltrami takes a close enough look at randomness to make it mysteriously disappear. The results of coin tosses, it turns out, are determined from the start, and only our incomplete knowledge makes them look random. "Random" sequences of numbers are more elusive, but Godels undecidability theorem informs us that we will never know. Those familiar with quantum indeterminacy assert that order is an illusion, and that the world is fundamentally random. Yet randomness is also an illusion. Perhaps order and randomness, like waves and particles, are only two sides of the same (tossed) coin.
This new edition of Mathematics for Dynamic covers tools such as linearization, feedback concepts, the use of Liapunov functions, and optimal control. Each chapter includes exercises, many of which expand on the material in the text.
Mathematical Models for Society and Biology, 2e, is a useful resource for researchers, graduate students, and post-docs in the applied mathematics and life science fields. Mathematical modeling is one of the major subfields of mathematical biology. A mathematical model may be used to help explain a system, to study the effects of different components, and to make predictions about behavior. Mathematical Models for Society and Biology, 2e, draws on current issues to engagingly relate how to use mathematics to gain insight into problems in biology and contemporary society. For this new edition, author Edward Beltrami uses mathematical models that are simple, transparent, and verifiable. Also n...
In the tradition of the bestselling Intellectual Capital, internationally recognized management and quality expert Rafael Aguayo shows how integrated mastery of many areas of knowledge -- MetaKnowledge -- can give corporate managers an edge, no matter what the future has in store.In today's world, the basis of economic power and wealth is rapidly shifting from physical resources to intellectual resources. Former powerhouses like U.S. Steel are now minor players, while modern giants such as Microsoft dominate industries that didn't even exist twenty-five years ago. The economy undergoes wild fluctuations. The Internet boom has come and gone. Through globalization, international boundaries are...
In this primer for the information age, von Baeyer presents a clear description of what information is; how concepts of its measurement, meaning, and transmission evolved; and what its ever-expanding presence portends for the future.
Here, Russ Marion discusses formal and social organizations from the perspectives of chaos and complexity theories. The book aims to offer a comprehensive overview of the new sciences of chaos and complexity.
Essential for all biology and biomathematics courses, this textbook provides students with a fresh perspective of quantitative techniques in biology in a field where virtually any advance in the life sciences requires a sophisticated mathematical approach. An Invitation to Biomathematics, expertly written by a team of experienced educators, offers students a solid understanding of solving biological problems with mathematical applications. This text succeeds in enabling students to truly experience advancements made in biology through mathematical models by containing computer-based hands-on laboratory projects with emphasis on model development, model validation, and model refinement. The s...
Modeling and Simulation have become endeavors central to all disciplines of science and engineering. They are used in the analysis of physical systems where they help us gain a better understanding of the functioning of our physical world. They are also important to the design of new engineering systems where they enable us to predict the behavior of a system before it is ever actually built. Modeling and simulation are the only techniques available that allow us to analyze arbitrarily non-linear systems accurately and under varying experimental conditions. Continuous System Modeling introduces the student to an important subclass of these techniques. They deal with the analysis of systems d...
None