You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Computational complexity is one of the most beautiful fields of modern mathematics, and it is increasingly relevant to other sciences ranging from physics to biology. But this beauty is often buried underneath layers of unnecessary formalism, and exciting recent results like interactive proofs, phase transitions, and quantum computing are usually considered too advanced for the typical student. This book bridges these gaps by explaining the deep ideas of theoretical computer science in a clear and enjoyable fashion, making them accessible to non-computer scientists and to computer scientists who finally want to appreciate their field from a new point of view. The authors start with a lucid a...
A Princeton astrophysicist explores whether journeying to the past or future is scientifically possible in this “intriguing” volume (Neil deGrasse Tyson). It was H. G. Wells who coined the term “time machine”—but the concept of time travel, both forward and backward, has always provoked fascination and yearning. It has mostly been dismissed as an impossibility in the world of physics; yet theories posited by Einstein, and advanced by scientists including Stephen Hawking and Kip Thorne, suggest that the phenomenon could actually occur. Building on these ideas, J. Richard Gott, a professor who has written on the subject for Scientific American, Time, and other publications, describes...
When Jews left Aleppo, Syria, in the early twentieth century and established communities abroad, they carried with them a repertory of songs (pizmonim) with sacred Hebrew texts set to melodies borrowed from the popular Middle Eastern Arab musical tradition. Let Jasmine Rain Down tells the story of the pizmonim as they have continued to be composed, performed, and transformed through the present day; it is thus an innovative ethnography of an important Judeo-Arabic musical tradition and a probing contribution to studies of the link between collective memory and popular culture. Shelemay views the intersection of music, individual remembrances, and collective memory through the pizmonim. Reconstructing a century of pizmon history in America based on research in New York, Mexico, and Israel, she explains how verbal and musical memories are embedded in individual songs and how these songs perform both what has been remembered and what otherwise would have been forgotten. In confronting issues of identity and meaning in a postmodern world, Shelemay moves ethnomusicology into the domain of memory studies.
Problem solving in computing is referred to as computational thinking. The theory behind this concept is challenging in its technicalities, yet simple in its ideas. This book introduces the theory of computation from its inception to current form of complexity; from explanations of how the field of computer science was formed using classical ideas in mathematics by Gödel, to conceptualization of the Turing Machine, to its more recent innovations in quantum computation, hypercomputation, vague computing and natural computing. It describes the impact of these in relation to academia, business and wider society, providing a sound theoretical basis for its practical application.Written for accessibility, Demystifying Computation provides the basic knowledge needed for non-experts in the field, undergraduate computer scientists and students of information and communication technology and software development.
A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples. The combination of two of the twentieth century's most influential and revolutionary scientific theories, information theory and quantum mechanics, gave rise to a radically new view of computing and information. Quantum information processing explores the implications of using quantum mechanics instead of classical mechanics to model information and its processing. Quantum computing is not about changing the physical substrate on which computation is done from classical to quantum but about changing the notion of computation itself, a...
In this thesis we study device-independent quantum key distribution based on energy-time entanglement. This is a method for cryptography that promises not only perfect secrecy, but also to be a practical method for quantum key distribution thanks to the reduced complexity when compared to other quantum key distribution protocols. However, there still exist a number of loopholes that must be understood and eliminated in order to rule out eavesdroppers. We study several relevant loopholes and show how they can be used to break the security of energy-time entangled systems. Attack strategies are reviewed as well as their countermeasures, and we show how full security can be re-established. Quan...
The notion of complexity is an important contribution of logic to theoretical computer science and mathematics. This volume attempts to approach complexity in a holistic way, investigating mathematical properties of complexity hierarchies at the same time as discussing algorithms and computational properties. A main focus of the volume is on some of the new paradigms of computation, among them Quantum Computing and Infinitary Computation. The papers in the volume are tied together by an introductory article describing abstract properties of complexity hierarchies. This volume will be of great interest to both mathematical logicians and theoretical computer scientists, providing them with new insights into the various views of complexity and thus shedding new light on their own research.
This book discusses the elementary ideas and tools needed for open quantum systems in a comprehensive manner. The emphasis is given to both the traditional master equation as well as the functional (path) integral approaches. It discusses the basic paradigm of open systems, the harmonic oscillator and the two-level system in detail. The traditional topics of dissipation and tunneling, as well as the modern field of quantum information, find a prominent place in the book. Assuming a basic background of quantum and statistical mechanics, this book will help readers familiarize with the basic tools of open quantum systems. Open quantum systems is the study of quantum dynamics of the system of i...
A memoir from a Modern Warrior of the Old Way. A writer, an artist, a Soldier, a student, a teacher; all describe Paul Askedall as he writes his views, opinions, emotions, and experiences of the day. Living by a martial philosophy, Paul shares a unique look on existence both inside and outside the box. Two parts silly, two parts serious, all parts intriguing, take time to read this interesting journal.
An introduction to symmetry breaking in the standard model / Edward Farhi -- Physics beyond the standard model / Jonathan A. Bagger -- Chiral effective Lagrangians / Heinrich Leutwyler -- Towards semi-classical string theory / Jeffrey A. Harvey -- Renormalization of electroweak gauge interactions / Dallas C. Kennedy -- Electroweak experiments at LEP / Alain Blondel -- The CKM matrix and CP violation / Yosef Nir -- Axion searches / Pierre Sikivie -- Lattice QCD / Andreas S. Kronfeld -- Introduction to perturbative QCD / George Sterman -- Heavy quark effective field theory / Howard Georgi -- Heavy flavor physics on the lattice / Estia Eichten -- Two lectures on neutrinos / Pierre Ramond