You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a general overview of virtual power plants (VPP) as a key technology in future energy communities and active distribution and transmission networks for managing distributed energy resources, providing local and global services, and facilitating market participation of small-scale managing distributed energy resources and prosumers. The book also aims at describing some practical solutions, business models, and novel architectures for the implementation of VPPs in the real world. Each chapter of the book begins with the fundamental structure of the problem required for a rudimentary understanding of the methods described. It provides a clear picture for practical implementation of VPP through novel technologies such as blockchain, digital twin, and distributed ledger technology. The book will help the electrical and power engineers, undergraduate, graduate students, research scholars, and utility engineers to understand the emerging solutions regarding the VPP concept lucidly.
This book constitutes the refereed proceedings of the 5th IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2014, held in Costa de Caparica, Portugal, in April 2014. The 68 revised full papers were carefully reviewed and selected from numerous submissions. They cover a wide spectrum of topics ranging from collaborative enterprise networks to microelectronics. The papers are organized in the following topical sections: collaborative networks; computational systems; self-organizing manufacturing systems; monitoring and supervision systems; advances in manufacturing; human-computer interfaces; robotics and mechatronics, Petri nets; multi-energy systems; monitoring and control in energy; modelling and simulation in energy; optimization issues in energy; operation issues in energy; power conversion; telecommunications; electronics: design; electronics: RF applications; and electronics: devices.
Enhancing the integration of renewable power generation from wind and solar into the traditional power network requires the mitigation of the vulnerabilities affecting the grid as a result of the intermittent nature of these resources. Variability and ramp events in power output are the key challenges to the system operators due to their impact on system balancing, reserves management, scheduling, and commitment of generation units. This book presents development of energy management system for renewable power generation (EMSRPG) tool that aims to achieve power-dispatching strategies based on forecasting renewable energy resources outputs to guarantee optimal dispatch of hybrid wind-solar ph...
Discusses flexibility issues in modern and future Smart power systems. Discusses flexible smart distribution grid with renewable-based distributed generation. Explains high penetration level of renewable energy sources and flexibility issues. Highlights flexibility based on energy storages, demand response, and plug-in electric vehicles. Describes Flexibility sources in modern power systems.
The smart grid initiative, integrating advanced sensing technologies, intelligent control methods, and bi-directional communications into the contemporary electricity grid, offers excellent opportunities for energy efficiency improvements and better integration of distributed generation, coexisting with centralized generation units within an active network. A large share of the installed capacity for recent renewable energy sources already comprises insular electricity grids, since the latter are preferable due to their high potential for renewables. However, the increasing share of renewables in the power generation mix of insular power systems presents a significant challenge to efficient ...
The aim of the conferences is to give the opportunity of a genuine and constructive dialogue among participants on the hot topics and far reaching challenges that engineers and scientists are called to face in the present days The conference is so a precious chance to discuss recent developments and practical applications in crucial areas, such as sustainable and renewable energy production, energy storage, smart grids, energy conversion, sustainable transport systems, EMC control in lightning and grounding systems, novel materials and nanotechnology
This book paves the way for researchers working on the sustainable interdependent networks spread over the fields of computer science, electrical engineering, and smart infrastructures. It provides the readers with a comprehensive insight to understand an in-depth big picture of smart cities as a thorough example of interdependent large-scale networks in both theory and application aspects. The contributors specify the importance and position of the interdependent networks in the context of developing the sustainable smart cities and provide a comprehensive investigation of recently developed optimization methods for large-scale networks. There has been an emerging concern regarding the opti...
While COVID19 has disrupted the world, the pressure to change our society to make it more secure, resilient, and environmentally friendly has increased AEIT 2021 addresses main scientific and technological challenges needed to decarbonize and make more resilient our society while providing an outlook to the opportunities arising from the energy and digital transition Intelligent and sustainable management of technological grids, decarbonization through electrification, tight interdependent energy systems, large bandwidth interconnections and digital solutions for the modern knowledge based society, advanced regulation, legislation, and economics will be among main topics of the conference AEIT 2021 is an international forum on the scientific and industrial outcomes aiming to stimulate innovative entrepreneurial initiatives and increase competitiveness AEIT 2021 is at its 113th edition and its second edition as a virtual conference with speakers and attendants worldwide connected
This book provides a general overview of virtual power plants (VPP) as a key technology in future energy communities and active distribution and transmission networks for managing distributed energy resources, providing local and global services, and facilitating market participation of small-scale managing distributed energy resources and prosumers. The book also aims at describing some practical solutions, business models, and novel architectures for the implementation of VPPs in the real world. Each chapter of the book begins with the fundamental structure of the problem required for a rudimentary understanding of the methods described. It provides a clear picture for practical implementation of VPP through novel technologies such as blockchain, digital twin, and distributed ledger technology. The book will help the electrical and power engineers, undergraduate, graduate students, research scholars, and utility engineers to understand the emerging solutions regarding the VPP concept lucidly.