You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested.
Now with an extensive introduction to fractal geometry Revised and updated, Encounters with Chaos and Fractals, Second Edition provides an accessible introduction to chaotic dynamics and fractal geometry for readers with a calculus background. It incorporates important mathematical concepts associated with these areas and backs up the definitions and results with motivation, examples, and applications. Laying the groundwork for later chapters, the text begins with examples of mathematical behavior exhibited by chaotic systems, first in one dimension and then in two and three dimensions. Focusing on fractal geometry, the author goes on to introduce famous infinitely complicated fractals. He analyzes them and explains how to obtain computer renditions of them. The book concludes with the famous Julia sets and the Mandelbrot set. With more than enough material for a one-semester course, this book gives readers an appreciation of the beauty and diversity of applications of chaotic dynamics and fractal geometry. It shows how these subjects continue to grow within mathematics and in many other disciplines.
This volume is based upon the presentations made at an international conference in London on the subject of 'Fractals and Chaos'. The objective of the conference was to bring together some of the leading practitioners and exponents in the overlapping fields of fractal geometry and chaos theory, with a view to exploring some of the relationships between the two domains. Based on this initial conference and subsequent exchanges between the editors and the authors, revised and updated papers were produced. These papers are contained in the present volume. We thank all those who contributed to this effort by way of planning and organisation, and also all those who helped in the production of thi...
This lovely little book will take off and fly on its own power, but the author has asked me to write a few words, and one should not say no to a friend. Specific topics in fractal geometry and its applications have already benefited from several excellent surveys of moderate length, and gossip and preliminary drafts tell us that we shall soon see several monographic treatments of broader topics. For the teacher, however, these surveys and monographs are not enough, and an urgent need for more helpful books has been widely recognized. To write such a book is no easy task, but Jens Feder meets the challenge head on. His approach combines the old Viking's willingness to attack many difficulties...
Contents:General Description of Impulsive Differential SystemsLinear SystemsStability of SolutionsPeriodic and Almost Periodic Impulsive SystemsIntegral Sets of Impulsive SystemsOptimum Control in Impulsive SystemsAsymptotic Study of Oscillations in Impulsive SystemsA Periodic and Almost Periodic Impulsive SystemsBibliographySubject Index Readership: Researchers in nonlinear science. keywords:Differential Equations with Impulses;Linear Systems;Stability;Periodic and Quasi-Periodic Solutions;Integral Sets;Optimal Control “… lucid … the book … will benefit all who are interested in IDE…” Mathematics Abstracts
This book focuses on bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types – those with jumps present either in the right-hand side, or in trajectories or in the arguments of solutions of equations. The results obtained can be applied to various fields, such as neural networks, brain dynamics, mechanical systems, weather phenomena and population dynamics. Developing bifurcation theory for various types of differential equations, the book is pioneering in the field. It presents the latest results and provides a practical guide to applying the theory to differential equations with various types of discontinuity. Moreover, it offers...
This brief provides a general overview of nonlinear systems that exhibit hidden-attractor behavior, a topic of interest in subjects as divers as physics, mechanics, electronics and secure communications. The brief is intended for readers who want to understand the concepts of the hidden attractor and hidden-attractor systems and to implement such systems experimentally using common electronic components. Emergent topics in circuit implementation of systems with hidden attractors are included. The brief serves as an up-to-date reference on an important research topic for undergraduate/graduate students, laboratory researchers and lecturers in various areas of engineering and physics.
This book presents a comprehensive overview of the research and latest developments in the field of the dynamics of coupled and driven chaotic oscillators, aimed at a wide audience. Since 1990, there has been very active research devoted to the field, culminating in a considerable body of knowledge, while active research continues.The results presented in the book will be valuable for scientific analysis and explanation in various different scientific disciplines, with potential applications in medicine and engineering. The contents include a selection of the most basic theoretical results, as well as experiments and applications presented at a mathematical level suited to readers working in non-hard sciences. It will also be of interest to physicists and mathematicians looking for an introduction to the field./a