You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
We experience elasticity everywhere in everyday life. This book covers several modern aspects of the established field of elasticity theory, applying general methods of classical analysis including advanced nonlinear aspects to derive detailed solutions to specific problems. It can serve as an introduction to nonlinear methods in science.
The most complete single-volume treatment of classical elasticity, this text features extensive editorial apparatus, including a historical introduction. Topics include stress, strain, bending, torsion, gravitational effects, and much more. 1927 edition.
Since the first edition of this book was published, there have been major improve- TM TM ments in symbolic mathematical languages such as Maple and Mathematica and this has opened up the possibility of solving considerably more complex and hence interesting and realistic elasticity problems as classroomexamples. It also enables the student to focus on the formulation of the problem (e. g. the appropriate governing equations and boundary conditions) rather than on the algebraic manipulations, with a consequent improvement in insight into the subject and in motivation. During the past 10 years I have developed files in Maple and Mathematica to facilitate this p- cess, notably electronic versio...
This book presents the foundational issues of linear elasticity in a compact, unabridged manner; it is directed to mathematicians and physical scientists who care for approaching this classical subject with rigor and depth. There are four chapters: the first two illustrate, respectively, the concepts of deformation and strain and of force and stress; the third is devoted to a study of constitutive relations; the last discusses the posing of equilibrium problems. The emphasis is in the description of elasticity as a model whose construction calls for a delicate interplay between physics and mathematics. The conceptual links with general continuum mechanics are carefully indicated. It would no...
Elasticity: Theory, Applications, and Numerics, Fourth Edition, continues its market-leading tradition of concisely presenting and developing the linear theory of elasticity, moving from solution methodologies, formulations, and strategies into applications of contemporary interest, such as fracture mechanics, anisotropic and composite materials, micromechanics, nonhomogeneous graded materials, and computational methods. Developed for a one- or two-semester graduate elasticity course, this new edition has been revised with new worked examples and exercises, and new or expanded coverage of areas such as treatment of large deformations, fracture mechanics, strain gradient and surface elasticit...
A comprehensive survey of the methods and theories of linear elasticity, this three-part introductory treatment covers general theory, two-dimensional elasticity, and three-dimensional elasticity. Ideal text for a two-course sequence on elasticity. 1984 edition.
Elasticity is a property of materials which returns them to their original shape after forces applied to change the shape have been removed. This advanced text explores the problems of composite or anisotropic materials and their elasticity.
Foundations of the Theory of Elasticity, Plasticity, and Viscoelasticity details fundamental and practical skills and approaches for carrying out research in the field of modern problems in the mechanics of deformed solids, which involves the theories of elasticity, plasticity, and viscoelasticity. The book includes all modern methods of research a
This textbook is a modern take on an old subject at the heart of materials physics. Properties of crystalline materials are almost always controlled by structural defects within them. Until relatively recently these defects were studied theoretically using continuum elasticity theory which ignores the atomic structure of the host material. This book introduces the concepts of elasticity in the traditional continuum way and also in terms of atomic interactions. It goes on to present point (impurities, missing atoms), line (dislocations) and planar (faults, cracks) defects at both the continuum level and the atomic level. This novel approach will be new to most engineers and it will appeal to physicists. There are exercises for the student to work through, with complete solutions free to course instructors from the OUP website.