You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Beams of accelerated particles are of particular importance in researching the structure of matter, for example, the structure of elementary particles and nature of nuclear forces. The present book reviews the problems concerned both with generation of accelerated particles and with application of electron beams for exerting chemical, thermal and other effects on matter. The book is designed for experts specializing in designing and servicing electron accelerators or developing new production processes with the use of accelerated particles.
Electron linear accelerators are being used throughout the world in increasing numbers in a variety of important applications. Foremost among these is their role in the treatment of cancer. Commercial uses include non-destructive testing by radiography, food preservation, product sterilization and radiation processing of materials such as plastics and adhesives. Scientific applications include investigations in radiation biology, radiation chemistry, nuclear and elementary particle physics and radiation research. This manual provides authoritative guidance in radiation protection for this important category of radiation sources.
This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams
Organized to serve as a ready reference, this book covers the design & principles of operation of microwave electron linear accelerators for the radiation treatment of cancer. Designed for use by persons without extensive knowledge & experience of accelerator technology, the book assumes a knowledge of elementary physics & mathematics & places its emphasis on how accelerators actually function & how they are used in cancer treatment. Coverage includes the history of development & application, general theory of acceleration, accelerator systems, radiation beam systems & associated equipment, performance characteristics, testing & use. The major modules of a representative medical accelerator are described, including principles of operation & how these models function collectively to produce electron & X-ray beams for radiotherapy.
Beams of accelerated particles are of particular importance in researching the structure of matter, for example, the structure of elementary particles and nature of nuclear forces. The present book reviews the problems concerned both with generation of accelerated particles and with application of electron beams for exerting chemical, thermal and other effects on matter. The book is designed for experts specializing in designing and servicing electron accelerators or developing new production processes with the use of accelerated particles.
Research and development of high energy accelerators began in 1911. Since then, milestones achieved are: (1) development of high gradient dc and rf accelerators,(2) achievement of high field magnets with excellent field quality,(3) discovery of transverse and longitudinal beam focusing principles,(4) invention of high power rf sources,(5) improvement of ultra-high vacuum technology,(6) attainment of high brightness (polarized/unpolarized) electron/ionsources,(7) advancement of beam dynamics and beam manipulation schemes, such as beam injection, accumulation, slow and fast extraction, beam damping and beam cooling, instability feedback, laser-beam interaction and harvesting instability for hi...