You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Four years after a first meeting in BADDECK, Canada, on the Physics of Ion-Ion and Electron-Ion collisions, a second Nato Advanced Study Institute, in HAl~/Lesse, Belgium, reexamined the subject which had become almost a new one, in consideration of the many important developments that had occured in the mean time. The developments have been particularly impressive in two areas : the di-electronic recombination of electrons with ions and the collisional processes of mUltiply charged ions. For dielectronic recombination, a major event was the obtainment, in 1983, of the first experimental data. This provided, at last, a non speculative basis for the study of that intricate and subtle process ...
Some of the earliest civilizations regarded the universe as organized around four principles, the four "elements" earth. water, air, and fire. Fire, which was the source of light and as such possessed an immaterial quality related to the spiritual world. was clearly the most impressive of these elements, although its quanti tative importance could not have been properly discerned. M- ern science has changed the names, but macroscopic matter is still divided into four states. The solid, liquid, and gaseous states are ordinary states, but the fourth state of matter, the plasma state, has retained a somewhat extraordinary character. It is now recognized that most of the matter of the universe i...
Four years after a first meeting in BADDECK, Canada, on the Physics of Ion-Ion and Electron-Ion collisions, a second Nato Advanced Study Institute, in HAl~/Lesse, Belgium, reexamined the subject which had become almost a new one, in consideration of the many important developments that had occured in the mean time. The developments have been particularly impressive in two areas : the di-electronic recombination of electrons with ions and the collisional processes of mUltiply charged ions. For dielectronic recombination, a major event was the obtainment, in 1983, of the first experimental data. This provided, at last, a non speculative basis for the study of that intricate and subtle process ...
This volume reviews the theoretical and experimental work about continuous electron emission in energetic ion-atom collisions over the last 30 years. General properties of the two-center electron emission are analyzed, and particular attention is given to screening effects. The book also offers an overview of multiple ionization processes.
The physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas is developed from first principles and applied across various fields, from quantum mechanics, electricity and magnetism, to statistical physics. This text links undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research.
The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.
Some of the earliest civilizations regarded the universe as organized around four principles, the four "elements" earth. water, air, and fire. Fire, which was the source of light and as such possessed an immaterial quality related to the spiritual world. was clearly the most impressive of these elements, although its quanti tative importance could not have been properly discerned. M- ern science has changed the names, but macroscopic matter is still divided into four states. The solid, liquid, and gaseous states are ordinary states, but the fourth state of matter, the plasma state, has retained a somewhat extraordinary character. It is now recognized that most of the matter of the universe i...
This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.
The principal goal of this book is to provide state-of-the-art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and hi...
Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to wa...